Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos

Detalhes bibliográficos
Autor(a) principal: Stefanes, Marco Aurélio
Data de Publicação: 2003
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-132319/
Resumo: Neste trabalho discutimos os principais modelos de computação paralela e apresentamos, como principal foco do trabalho, soluções para alguns problemas em classes especiais de grafos usando modelos de granularidade grossa que acreditamos sirvam de reflexão para a validação de tais modelos. Tratamos alguns problemas em grafos bipartidos convexos. Estes problemas são: encontrar um emparelhamento máximo, encontrar um conjunto independente máximo, determinar um circuito hamiltoniano e determinar os caminhos mínimos entre todos os pares de vértices em grafos bipartidos biconvexos. Relatamos os resultados experimentais da implementação de alguns dos algoritmos apresentados. Como principais contribuições, descrevemos uma adaptação para o Modelo BSP/CGM de um algoritmo PRAM para encontrar uma coloração em grafos cujo grau máximo é limitado por uma constante, fazemos uma correção no algoritmo BSP/CGM de Bose et al [BCDL99] para encontrar um emparelhamento máximo em grafos bipartidos convexos, descrevemos um novo algoritmo seqüencial para encontrar um conjunto independente máximo nesta classe de grafo e estendemos a idéia deste algoritmo formulando um algoritmo para o modelo BSP/CGM, e desenvolvemos um algoritmo seqüencial linear para encontrar um circuito hamiltoniano de fácil paralelização nesta mesma classe
id USP_9c6dd123e3c6b216dbf65e57fc947d9d
oai_identifier_str oai:teses.usp.br:tde-20210729-132319
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Algoritmos paralelos de granularidade grossa em grafos bipartidos convexosnot availableTécnicas De ProgramaçãoNeste trabalho discutimos os principais modelos de computação paralela e apresentamos, como principal foco do trabalho, soluções para alguns problemas em classes especiais de grafos usando modelos de granularidade grossa que acreditamos sirvam de reflexão para a validação de tais modelos. Tratamos alguns problemas em grafos bipartidos convexos. Estes problemas são: encontrar um emparelhamento máximo, encontrar um conjunto independente máximo, determinar um circuito hamiltoniano e determinar os caminhos mínimos entre todos os pares de vértices em grafos bipartidos biconvexos. Relatamos os resultados experimentais da implementação de alguns dos algoritmos apresentados. Como principais contribuições, descrevemos uma adaptação para o Modelo BSP/CGM de um algoritmo PRAM para encontrar uma coloração em grafos cujo grau máximo é limitado por uma constante, fazemos uma correção no algoritmo BSP/CGM de Bose et al [BCDL99] para encontrar um emparelhamento máximo em grafos bipartidos convexos, descrevemos um novo algoritmo seqüencial para encontrar um conjunto independente máximo nesta classe de grafo e estendemos a idéia deste algoritmo formulando um algoritmo para o modelo BSP/CGM, e desenvolvemos um algoritmo seqüencial linear para encontrar um circuito hamiltoniano de fácil paralelização nesta mesma classenot availableBiblioteca Digitais de Teses e Dissertações da USPSoares, José Augusto RamosStefanes, Marco Aurélio2003-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-132319/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:08:23Zoai:teses.usp.br:tde-20210729-132319Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:08:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
not available
title Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
spellingShingle Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
Stefanes, Marco Aurélio
Técnicas De Programação
title_short Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
title_full Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
title_fullStr Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
title_full_unstemmed Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
title_sort Algoritmos paralelos de granularidade grossa em grafos bipartidos convexos
author Stefanes, Marco Aurélio
author_facet Stefanes, Marco Aurélio
author_role author
dc.contributor.none.fl_str_mv Soares, José Augusto Ramos
dc.contributor.author.fl_str_mv Stefanes, Marco Aurélio
dc.subject.por.fl_str_mv Técnicas De Programação
topic Técnicas De Programação
description Neste trabalho discutimos os principais modelos de computação paralela e apresentamos, como principal foco do trabalho, soluções para alguns problemas em classes especiais de grafos usando modelos de granularidade grossa que acreditamos sirvam de reflexão para a validação de tais modelos. Tratamos alguns problemas em grafos bipartidos convexos. Estes problemas são: encontrar um emparelhamento máximo, encontrar um conjunto independente máximo, determinar um circuito hamiltoniano e determinar os caminhos mínimos entre todos os pares de vértices em grafos bipartidos biconvexos. Relatamos os resultados experimentais da implementação de alguns dos algoritmos apresentados. Como principais contribuições, descrevemos uma adaptação para o Modelo BSP/CGM de um algoritmo PRAM para encontrar uma coloração em grafos cujo grau máximo é limitado por uma constante, fazemos uma correção no algoritmo BSP/CGM de Bose et al [BCDL99] para encontrar um emparelhamento máximo em grafos bipartidos convexos, descrevemos um novo algoritmo seqüencial para encontrar um conjunto independente máximo nesta classe de grafo e estendemos a idéia deste algoritmo formulando um algoritmo para o modelo BSP/CGM, e desenvolvemos um algoritmo seqüencial linear para encontrar um circuito hamiltoniano de fácil paralelização nesta mesma classe
publishDate 2003
dc.date.none.fl_str_mv 2003-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-132319/
url https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-132319/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257208824266752