Modelagem de epidemias via sistemas de partículas interagentes

Detalhes bibliográficos
Autor(a) principal: Vargas Junior, Valdivino
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27052013-085717/
Resumo: Estudamos um sistema de partículas a tempo discreto cuja dinâmica é a seguinte. Considere que no instante inicial sobre cada inteiro não negativo há uma partícula, inicialmente inativa. A partícula da origem é ativada e instantaneamente ativa um conjunto aleatório contíguo de partículas que estão a sua direita. Como regra, no instante seguinte ao que foi ativada, cada partícula ativa realiza esta mesma dinâmica de modo independente de todo o resto. Dizemos que o processo sobrevive se em qualquer momento sempre há ao menos uma partícula ativa. Chamamos este processo de Firework, associando a dinâmica de ativação de uma partícula inativa a uma infecção ou explosão. Nosso interesse é estabelecer se o processo tem probabilidade positiva de sobrevivência e apresentar limites para esta probabilidade. Isto deve ser feito em função da distribuição da variável aleatória que define o raio de ação de uma partícula. Associando o processo de ativação a uma infecção, podemos pensar este modelo como um modelo epidêmico. Consideramos também algumas variações dessa dinâmica. Dentre elas, variantes com partículas distribuídas sobre a semirreta dos reais positivos (nesta vertente, existem condições para as distâncias entre partículas consecutivas) e também com as partículas distribuídas sobre vértices de árvores. Estudamos também para esses casos a transição de fase e probabilidade de sobrevivência. Nesta variante os resultados obtidos são funções da sequência de distribuições dos alcances das explosões e da estrutura dos lugares onde se localizam as partículas. Consideramos também variações do modelo onde cada partícula ao ser ativada, permanece ativa durante um tempo aleatório e nesse período emite explosões que ocorrem em instantes aleatórios.
id USP_9e9d83b97ab365810bd9a9d53a007112
oai_identifier_str oai:teses.usp.br:tde-27052013-085717
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelagem de epidemias via sistemas de partículas interagentesModeling epidemics through interacting particle systemsbranching processepidemic modelmodelo epidêmicophase transition.processo de ramificaçãotransição de faseEstudamos um sistema de partículas a tempo discreto cuja dinâmica é a seguinte. Considere que no instante inicial sobre cada inteiro não negativo há uma partícula, inicialmente inativa. A partícula da origem é ativada e instantaneamente ativa um conjunto aleatório contíguo de partículas que estão a sua direita. Como regra, no instante seguinte ao que foi ativada, cada partícula ativa realiza esta mesma dinâmica de modo independente de todo o resto. Dizemos que o processo sobrevive se em qualquer momento sempre há ao menos uma partícula ativa. Chamamos este processo de Firework, associando a dinâmica de ativação de uma partícula inativa a uma infecção ou explosão. Nosso interesse é estabelecer se o processo tem probabilidade positiva de sobrevivência e apresentar limites para esta probabilidade. Isto deve ser feito em função da distribuição da variável aleatória que define o raio de ação de uma partícula. Associando o processo de ativação a uma infecção, podemos pensar este modelo como um modelo epidêmico. Consideramos também algumas variações dessa dinâmica. Dentre elas, variantes com partículas distribuídas sobre a semirreta dos reais positivos (nesta vertente, existem condições para as distâncias entre partículas consecutivas) e também com as partículas distribuídas sobre vértices de árvores. Estudamos também para esses casos a transição de fase e probabilidade de sobrevivência. Nesta variante os resultados obtidos são funções da sequência de distribuições dos alcances das explosões e da estrutura dos lugares onde se localizam as partículas. Consideramos também variações do modelo onde cada partícula ao ser ativada, permanece ativa durante um tempo aleatório e nesse período emite explosões que ocorrem em instantes aleatórios.We studied a discrete time particle system whose dynamic is as follows. Consider that at time zero, on each non-negative integer, there is a particle, initially inactive. A particle which is placed at origin is activated and instantly activates a contiguous random set of particles that is on its right. As a rule, the next moment to what it has been activated, each active particle carries the same behavior independently of the rest. We say that the process survives if the amount of particles activated along the process is infinite. We call this the Firework process, associating the activation dynamic of a particle to an infection or explosion process. Our interest is to establish whether the process has positive probability of survival and to present limits to this probability. This is done according to the distribution random variable that defines the radius of infection of each active particle, Associating the activation process to an infection, we think this model as a model epidemic. We also consider some variations of this dynamic. Among them, variants with particles distributed over the half line (there are conditions for the distances between consecutive particles) and also with particles distributed over the vertices of a tree. We studied phase transitions and the correspondent survival probability. In this variant the results depend on the sequence of probability distributions for the range of the explosions and on the particles displacement. We also consider a variation where each particle after activated, remains active during a random time period emitting explosions that occur in random moments.Biblioteca Digitais de Teses e Dissertações da USPMachado, Fabio PratesVargas Junior, Valdivino2010-04-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-27052013-085717/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T23:02:02Zoai:teses.usp.br:tde-27052013-085717Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T23:02:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem de epidemias via sistemas de partículas interagentes
Modeling epidemics through interacting particle systems
title Modelagem de epidemias via sistemas de partículas interagentes
spellingShingle Modelagem de epidemias via sistemas de partículas interagentes
Vargas Junior, Valdivino
branching process
epidemic model
modelo epidêmico
phase transition.
processo de ramificação
transição de fase
title_short Modelagem de epidemias via sistemas de partículas interagentes
title_full Modelagem de epidemias via sistemas de partículas interagentes
title_fullStr Modelagem de epidemias via sistemas de partículas interagentes
title_full_unstemmed Modelagem de epidemias via sistemas de partículas interagentes
title_sort Modelagem de epidemias via sistemas de partículas interagentes
author Vargas Junior, Valdivino
author_facet Vargas Junior, Valdivino
author_role author
dc.contributor.none.fl_str_mv Machado, Fabio Prates
dc.contributor.author.fl_str_mv Vargas Junior, Valdivino
dc.subject.por.fl_str_mv branching process
epidemic model
modelo epidêmico
phase transition.
processo de ramificação
transição de fase
topic branching process
epidemic model
modelo epidêmico
phase transition.
processo de ramificação
transição de fase
description Estudamos um sistema de partículas a tempo discreto cuja dinâmica é a seguinte. Considere que no instante inicial sobre cada inteiro não negativo há uma partícula, inicialmente inativa. A partícula da origem é ativada e instantaneamente ativa um conjunto aleatório contíguo de partículas que estão a sua direita. Como regra, no instante seguinte ao que foi ativada, cada partícula ativa realiza esta mesma dinâmica de modo independente de todo o resto. Dizemos que o processo sobrevive se em qualquer momento sempre há ao menos uma partícula ativa. Chamamos este processo de Firework, associando a dinâmica de ativação de uma partícula inativa a uma infecção ou explosão. Nosso interesse é estabelecer se o processo tem probabilidade positiva de sobrevivência e apresentar limites para esta probabilidade. Isto deve ser feito em função da distribuição da variável aleatória que define o raio de ação de uma partícula. Associando o processo de ativação a uma infecção, podemos pensar este modelo como um modelo epidêmico. Consideramos também algumas variações dessa dinâmica. Dentre elas, variantes com partículas distribuídas sobre a semirreta dos reais positivos (nesta vertente, existem condições para as distâncias entre partículas consecutivas) e também com as partículas distribuídas sobre vértices de árvores. Estudamos também para esses casos a transição de fase e probabilidade de sobrevivência. Nesta variante os resultados obtidos são funções da sequência de distribuições dos alcances das explosões e da estrutura dos lugares onde se localizam as partículas. Consideramos também variações do modelo onde cada partícula ao ser ativada, permanece ativa durante um tempo aleatório e nesse período emite explosões que ocorrem em instantes aleatórios.
publishDate 2010
dc.date.none.fl_str_mv 2010-04-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27052013-085717/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27052013-085717/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257409485012992