Técnicas de classificação textual utilizando grafos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-153557/ |
Resumo: | O grande volume de informação textual sendo gerado a todo momento torna necessário o aprimoramento constante de sistemas capazes de classificar textos em categorias específicas. Essa categorização visa, por exemplo, separar notícias indexadas por mecanismos de buscas, identificar a autoria de livros e cartas antigas ou detectar plágio em artigos científicos. As técnicas de classificação textual existentes, baseadas em conteúdo, apesar de conseguirem uma boa performance quantitativamente, ainda apresentam dificuldades em lidar com aspectos semânticos presentes nos textos escritos em língua natural. Neste sentido, abordagens alternativas vem sendo propostas, como as baseadas em redes complexas, que levam em consideração apenas o relacionamento entre as palavras. Neste estudo, aplicamos a modelagem de textos como redes complexas e utilizamos as métricas extraídas como atributos para classificação, utilizando um problema de reconhecimento de autoria para ilustrar a aplicação das técnicas descritas ao longo deste texto |
id |
USP_9f0d02451bf6aa12af5daa24194f311a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-13052019-153557 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Técnicas de classificação textual utilizando grafosText classification techniques using graphsClassificação textualComplex networksGrafosGraphsRedes complexasText categorizationO grande volume de informação textual sendo gerado a todo momento torna necessário o aprimoramento constante de sistemas capazes de classificar textos em categorias específicas. Essa categorização visa, por exemplo, separar notícias indexadas por mecanismos de buscas, identificar a autoria de livros e cartas antigas ou detectar plágio em artigos científicos. As técnicas de classificação textual existentes, baseadas em conteúdo, apesar de conseguirem uma boa performance quantitativamente, ainda apresentam dificuldades em lidar com aspectos semânticos presentes nos textos escritos em língua natural. Neste sentido, abordagens alternativas vem sendo propostas, como as baseadas em redes complexas, que levam em consideração apenas o relacionamento entre as palavras. Neste estudo, aplicamos a modelagem de textos como redes complexas e utilizamos as métricas extraídas como atributos para classificação, utilizando um problema de reconhecimento de autoria para ilustrar a aplicação das técnicas descritas ao longo deste textoThe large volume of textual information being generated at all times makes it necessary to constantly improve systems capable of classifying texts into specific categories. This categorization aims, for example, to separate news items indexed by search engines, identify authorship of old books and letters, or detect plagiarism in scientific articles. Existing textual classification techniques, based on content, despite achieving good quantitative performance, still present difficulties in dealing with semantic aspects present in texts written in natural language. In this sense, alternative approaches have been proposed, such as those based on complex networks, which take into account only the relationship between words. In this study, we applied text modeling as graphs and extracted metrics typically used in the study of complex networks to be used as classifier attributes. To illustrate these techniques, a problem of authorship recognition in small texts was chosen as an exampleBiblioteca Digitais de Teses e Dissertações da USPMartinez, Alexandre SoutoSilva, Allef Páblo Araújo da2019-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-153557/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-07-04T17:56:11Zoai:teses.usp.br:tde-13052019-153557Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-07-04T17:56:11Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Técnicas de classificação textual utilizando grafos Text classification techniques using graphs |
title |
Técnicas de classificação textual utilizando grafos |
spellingShingle |
Técnicas de classificação textual utilizando grafos Silva, Allef Páblo Araújo da Classificação textual Complex networks Grafos Graphs Redes complexas Text categorization |
title_short |
Técnicas de classificação textual utilizando grafos |
title_full |
Técnicas de classificação textual utilizando grafos |
title_fullStr |
Técnicas de classificação textual utilizando grafos |
title_full_unstemmed |
Técnicas de classificação textual utilizando grafos |
title_sort |
Técnicas de classificação textual utilizando grafos |
author |
Silva, Allef Páblo Araújo da |
author_facet |
Silva, Allef Páblo Araújo da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Martinez, Alexandre Souto |
dc.contributor.author.fl_str_mv |
Silva, Allef Páblo Araújo da |
dc.subject.por.fl_str_mv |
Classificação textual Complex networks Grafos Graphs Redes complexas Text categorization |
topic |
Classificação textual Complex networks Grafos Graphs Redes complexas Text categorization |
description |
O grande volume de informação textual sendo gerado a todo momento torna necessário o aprimoramento constante de sistemas capazes de classificar textos em categorias específicas. Essa categorização visa, por exemplo, separar notícias indexadas por mecanismos de buscas, identificar a autoria de livros e cartas antigas ou detectar plágio em artigos científicos. As técnicas de classificação textual existentes, baseadas em conteúdo, apesar de conseguirem uma boa performance quantitativamente, ainda apresentam dificuldades em lidar com aspectos semânticos presentes nos textos escritos em língua natural. Neste sentido, abordagens alternativas vem sendo propostas, como as baseadas em redes complexas, que levam em consideração apenas o relacionamento entre as palavras. Neste estudo, aplicamos a modelagem de textos como redes complexas e utilizamos as métricas extraídas como atributos para classificação, utilizando um problema de reconhecimento de autoria para ilustrar a aplicação das técnicas descritas ao longo deste texto |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-153557/ |
url |
http://www.teses.usp.br/teses/disponiveis/59/59143/tde-13052019-153557/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256934037585920 |