On Hamiltonian elliptic systems with exponential growth in dimension two

Detalhes bibliográficos
Autor(a) principal: Leuyacc, Yony Raúl Santaria
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/
Resumo: In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.
id USP_9fd2e14d2cc2267c6841c645cf74bdbc
oai_identifier_str oai:teses.usp.br:tde-02082017-150001
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling On Hamiltonian elliptic systems with exponential growth in dimension twoSistemas elípticos hamiltonianos com crescimento exponencial em dimensão doisCrescimento exponencialDesigualdade de Trudinger - MoserEspaços de Lorent-SobolevExponential growthHamiltonian systemsLorentz-Sobolev spacesMétodos variacionaisSistemas hamiltonianosTrudinger-Moser inequalityVariational methodsIn this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.Biblioteca Digitais de Teses e Dissertações da USPSoares, Sérgio Henrique MonariLeuyacc, Yony Raúl Santaria2017-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-02082017-150001Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On Hamiltonian elliptic systems with exponential growth in dimension two
Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão dois
title On Hamiltonian elliptic systems with exponential growth in dimension two
spellingShingle On Hamiltonian elliptic systems with exponential growth in dimension two
Leuyacc, Yony Raúl Santaria
Crescimento exponencial
Desigualdade de Trudinger - Moser
Espaços de Lorent-Sobolev
Exponential growth
Hamiltonian systems
Lorentz-Sobolev spaces
Métodos variacionais
Sistemas hamiltonianos
Trudinger-Moser inequality
Variational methods
title_short On Hamiltonian elliptic systems with exponential growth in dimension two
title_full On Hamiltonian elliptic systems with exponential growth in dimension two
title_fullStr On Hamiltonian elliptic systems with exponential growth in dimension two
title_full_unstemmed On Hamiltonian elliptic systems with exponential growth in dimension two
title_sort On Hamiltonian elliptic systems with exponential growth in dimension two
author Leuyacc, Yony Raúl Santaria
author_facet Leuyacc, Yony Raúl Santaria
author_role author
dc.contributor.none.fl_str_mv Soares, Sérgio Henrique Monari
dc.contributor.author.fl_str_mv Leuyacc, Yony Raúl Santaria
dc.subject.por.fl_str_mv Crescimento exponencial
Desigualdade de Trudinger - Moser
Espaços de Lorent-Sobolev
Exponential growth
Hamiltonian systems
Lorentz-Sobolev spaces
Métodos variacionais
Sistemas hamiltonianos
Trudinger-Moser inequality
Variational methods
topic Crescimento exponencial
Desigualdade de Trudinger - Moser
Espaços de Lorent-Sobolev
Exponential growth
Hamiltonian systems
Lorentz-Sobolev spaces
Métodos variacionais
Sistemas hamiltonianos
Trudinger-Moser inequality
Variational methods
description In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256613580177408