On Hamiltonian elliptic systems with exponential growth in dimension two
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/ |
Resumo: | In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. |
id |
USP_9fd2e14d2cc2267c6841c645cf74bdbc |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-02082017-150001 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
On Hamiltonian elliptic systems with exponential growth in dimension twoSistemas elípticos hamiltonianos com crescimento exponencial em dimensão doisCrescimento exponencialDesigualdade de Trudinger - MoserEspaços de Lorent-SobolevExponential growthHamiltonian systemsLorentz-Sobolev spacesMétodos variacionaisSistemas hamiltonianosTrudinger-Moser inequalityVariational methodsIn this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.Biblioteca Digitais de Teses e Dissertações da USPSoares, Sérgio Henrique MonariLeuyacc, Yony Raúl Santaria2017-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-02082017-150001Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
On Hamiltonian elliptic systems with exponential growth in dimension two Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão dois |
title |
On Hamiltonian elliptic systems with exponential growth in dimension two |
spellingShingle |
On Hamiltonian elliptic systems with exponential growth in dimension two Leuyacc, Yony Raúl Santaria Crescimento exponencial Desigualdade de Trudinger - Moser Espaços de Lorent-Sobolev Exponential growth Hamiltonian systems Lorentz-Sobolev spaces Métodos variacionais Sistemas hamiltonianos Trudinger-Moser inequality Variational methods |
title_short |
On Hamiltonian elliptic systems with exponential growth in dimension two |
title_full |
On Hamiltonian elliptic systems with exponential growth in dimension two |
title_fullStr |
On Hamiltonian elliptic systems with exponential growth in dimension two |
title_full_unstemmed |
On Hamiltonian elliptic systems with exponential growth in dimension two |
title_sort |
On Hamiltonian elliptic systems with exponential growth in dimension two |
author |
Leuyacc, Yony Raúl Santaria |
author_facet |
Leuyacc, Yony Raúl Santaria |
author_role |
author |
dc.contributor.none.fl_str_mv |
Soares, Sérgio Henrique Monari |
dc.contributor.author.fl_str_mv |
Leuyacc, Yony Raúl Santaria |
dc.subject.por.fl_str_mv |
Crescimento exponencial Desigualdade de Trudinger - Moser Espaços de Lorent-Sobolev Exponential growth Hamiltonian systems Lorentz-Sobolev spaces Métodos variacionais Sistemas hamiltonianos Trudinger-Moser inequality Variational methods |
topic |
Crescimento exponencial Desigualdade de Trudinger - Moser Espaços de Lorent-Sobolev Exponential growth Hamiltonian systems Lorentz-Sobolev spaces Métodos variacionais Sistemas hamiltonianos Trudinger-Moser inequality Variational methods |
description |
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256613580177408 |