Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante

Detalhes bibliográficos
Autor(a) principal: Nogueira, Victor Henrique Rabesquine
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-30082019-155545/
Resumo: Os sistemas biológicos macromoleculares são conhecidos por serem sistemas interagentes. Essas interações são fundamentais para processos como comunicação celular, especificidade de reações enzimáticas e regulação da expressão gênica. Os métodos disponíveis atualmente para estimar a afinidade das interações biomoleculares podem ser divididos, basicamente, em dois grupos: métodos rápidos que estimam a energia livre de ligação através de aproximações de campo de força (por exemplo, docking); e os métodos que são baseados em ensembles de Dinâmica Molecular (DM) para calcular as energias livres de ligação de maneira mais rigorosa, porém, com custo computacional mais elevado. O objetivo deste trabalho é aprimorar e validar um método menos custoso para o cálculo da energia livre de ligação. Para isso, simulações atomísticas de Monte Carlo (MC) dos ligantes no sítio de ligação são usadas para gerar ensembles termodinâmicos. Depois disso, as energias livres de ligação são calculadas usando uma combinação de energias e entropias estimadas através de uma estratégia de aproximação de primeira ordem. Dois algoritmos de amostragem foram avaliados no cálculo de energia de ligação. O primeiro algoritmo amostra graus de liberdade de translação e rotação randômicas do centro de massa do ligante no sítio de ligação, além de variações randômicas nos ângulos de torção envolvendo átomos pesados (não hidrogênio). O segundo amostra graus de liberdade rotacional e translacional do centro de massa, além de deslocamentos atômicos individuais para cada átomo do ligante. Além disso, diferentes modelos para calcular as contribuições polares para interação intermolecular foram utilizados. Comparações entre as energias livres de ligação calculadas com baixo custo computacional e as experimentais disponíveis na literatura para o sistema modelo utilizado, lisozima do vírus T4, mostraram uma correlação considerável (r=0,64 para N=27). Esses dados também apresentaram resultados interessantes quando comparados com outras metodologias, tais como LIE, MM-PBSA e MM-GBSA. Assim, a abordagem utilizada para a determinação das energias de interação mostrou-se eficiente em termos de tempo computacional e para comparação com dados de energia livre de ligação determinados experimentalmente.
id USP_a046e7ac27faa9e0a33075682b009ee9
oai_identifier_str oai:teses.usp.br:tde-30082019-155545
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-liganteValidation of Monte Carlo methods for evaluating protein-ligand binding free energyBinding free energyEnergia livre de ligaçãoInterações molecularesMolecular interactionsMonte CarloMonte CarloOs sistemas biológicos macromoleculares são conhecidos por serem sistemas interagentes. Essas interações são fundamentais para processos como comunicação celular, especificidade de reações enzimáticas e regulação da expressão gênica. Os métodos disponíveis atualmente para estimar a afinidade das interações biomoleculares podem ser divididos, basicamente, em dois grupos: métodos rápidos que estimam a energia livre de ligação através de aproximações de campo de força (por exemplo, docking); e os métodos que são baseados em ensembles de Dinâmica Molecular (DM) para calcular as energias livres de ligação de maneira mais rigorosa, porém, com custo computacional mais elevado. O objetivo deste trabalho é aprimorar e validar um método menos custoso para o cálculo da energia livre de ligação. Para isso, simulações atomísticas de Monte Carlo (MC) dos ligantes no sítio de ligação são usadas para gerar ensembles termodinâmicos. Depois disso, as energias livres de ligação são calculadas usando uma combinação de energias e entropias estimadas através de uma estratégia de aproximação de primeira ordem. Dois algoritmos de amostragem foram avaliados no cálculo de energia de ligação. O primeiro algoritmo amostra graus de liberdade de translação e rotação randômicas do centro de massa do ligante no sítio de ligação, além de variações randômicas nos ângulos de torção envolvendo átomos pesados (não hidrogênio). O segundo amostra graus de liberdade rotacional e translacional do centro de massa, além de deslocamentos atômicos individuais para cada átomo do ligante. Além disso, diferentes modelos para calcular as contribuições polares para interação intermolecular foram utilizados. Comparações entre as energias livres de ligação calculadas com baixo custo computacional e as experimentais disponíveis na literatura para o sistema modelo utilizado, lisozima do vírus T4, mostraram uma correlação considerável (r=0,64 para N=27). Esses dados também apresentaram resultados interessantes quando comparados com outras metodologias, tais como LIE, MM-PBSA e MM-GBSA. Assim, a abordagem utilizada para a determinação das energias de interação mostrou-se eficiente em termos de tempo computacional e para comparação com dados de energia livre de ligação determinados experimentalmente.Macromolecular biological systems are widely known by its interaction properties. Those interactions play fundamental roles in processes such as cellular communication, specificity of enzymatic reactions and regulation of gene expression. The methods currently available to estimate the affinity of biomolecular interactions can be divided basically into two groups: fast methods that estimate the free energy of binding through force field approximations (e.g., docking); and methods that are based on Molecular Dynamics (DM) ensembles to calculate binding free energies more rigorously, however, with higher computational cost. The objective of this work is to improve and validate a less costly method for calculating binding free energy. For this, atomistic Monte Carlo (MC) simulations of ligands at the binding site are used to generate thermodynamic ensembles. Thereafter, the binding free energies are calculated using a combination of energies and entropy estimated through a first-order approximation strategy. Two sampling algorithms were evaluated in the calculation of the binding energy. The first one samples the degrees of freedom from translation and rotation of the center of mass of the binder at the binding site, as well as random variations in the torsion angles involving heavy atoms (non-hydrogen). The second one samples the rotational and translational degrees of freedom of the ligand center of mass, as well as individual atomic displacements for each atom of the ligand. In addition, different models to calculate the polar contributions for intermolecular interaction were used. Comparisons between the binding free energies calculated with low computational cost and the experimental ones available in the literature for the system used, T4 virus lysozyme, resulted in acceptable correlation values (r=0.64 for N=27). Those data also showed interesting results compared to different methodologies such as LIE, MM-PBSA and MM-GBSA. Therefore, the used approach for determining the binding energies was efficient in terms of computational time and for comparison with free energy data determined experimentally.Biblioteca Digitais de Teses e Dissertações da USPNascimento, Alessandro SilvaNogueira, Victor Henrique Rabesquine2019-04-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-30082019-155545/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-11-08T23:51:02Zoai:teses.usp.br:tde-30082019-155545Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-11-08T23:51:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
Validation of Monte Carlo methods for evaluating protein-ligand binding free energy
title Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
spellingShingle Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
Nogueira, Victor Henrique Rabesquine
Binding free energy
Energia livre de ligação
Interações moleculares
Molecular interactions
Monte Carlo
Monte Carlo
title_short Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
title_full Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
title_fullStr Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
title_full_unstemmed Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
title_sort Validação de métodos de Monte Carlo para avaliação de energia de interação proteína-ligante
author Nogueira, Victor Henrique Rabesquine
author_facet Nogueira, Victor Henrique Rabesquine
author_role author
dc.contributor.none.fl_str_mv Nascimento, Alessandro Silva
dc.contributor.author.fl_str_mv Nogueira, Victor Henrique Rabesquine
dc.subject.por.fl_str_mv Binding free energy
Energia livre de ligação
Interações moleculares
Molecular interactions
Monte Carlo
Monte Carlo
topic Binding free energy
Energia livre de ligação
Interações moleculares
Molecular interactions
Monte Carlo
Monte Carlo
description Os sistemas biológicos macromoleculares são conhecidos por serem sistemas interagentes. Essas interações são fundamentais para processos como comunicação celular, especificidade de reações enzimáticas e regulação da expressão gênica. Os métodos disponíveis atualmente para estimar a afinidade das interações biomoleculares podem ser divididos, basicamente, em dois grupos: métodos rápidos que estimam a energia livre de ligação através de aproximações de campo de força (por exemplo, docking); e os métodos que são baseados em ensembles de Dinâmica Molecular (DM) para calcular as energias livres de ligação de maneira mais rigorosa, porém, com custo computacional mais elevado. O objetivo deste trabalho é aprimorar e validar um método menos custoso para o cálculo da energia livre de ligação. Para isso, simulações atomísticas de Monte Carlo (MC) dos ligantes no sítio de ligação são usadas para gerar ensembles termodinâmicos. Depois disso, as energias livres de ligação são calculadas usando uma combinação de energias e entropias estimadas através de uma estratégia de aproximação de primeira ordem. Dois algoritmos de amostragem foram avaliados no cálculo de energia de ligação. O primeiro algoritmo amostra graus de liberdade de translação e rotação randômicas do centro de massa do ligante no sítio de ligação, além de variações randômicas nos ângulos de torção envolvendo átomos pesados (não hidrogênio). O segundo amostra graus de liberdade rotacional e translacional do centro de massa, além de deslocamentos atômicos individuais para cada átomo do ligante. Além disso, diferentes modelos para calcular as contribuições polares para interação intermolecular foram utilizados. Comparações entre as energias livres de ligação calculadas com baixo custo computacional e as experimentais disponíveis na literatura para o sistema modelo utilizado, lisozima do vírus T4, mostraram uma correlação considerável (r=0,64 para N=27). Esses dados também apresentaram resultados interessantes quando comparados com outras metodologias, tais como LIE, MM-PBSA e MM-GBSA. Assim, a abordagem utilizada para a determinação das energias de interação mostrou-se eficiente em termos de tempo computacional e para comparação com dados de energia livre de ligação determinados experimentalmente.
publishDate 2019
dc.date.none.fl_str_mv 2019-04-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-30082019-155545/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-30082019-155545/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809091205546377216