Geosynthetic reinforced soil retaining walls with cohesive backfills

Detalhes bibliográficos
Autor(a) principal: Franco, Yara Barbosa
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18132/tde-19012024-105815/
Resumo:  Where granular materials are not easily available, local cohesive soils are increasingly employed in geosynthetic reinforced soil walls as a cheap and sustainable option. Conventional design methods do not yet account for the beneficial effect of cohesion in reducing the amount of required reinforcement. Similarly, the contribution of the face to stability is rarely accounted for, despite plenty of experimental evidence in its favour. This thesis evaluated the influence of soil cohesion and a structural facing on the stability of reinforced soil walls by using two approaches: the first was a semi-analytical approach while the second one an experimental approach.  The semi-analytical method employed is based on limit analysis for the design of reinforced soil walls in frictional-cohesive backfills accounting for the wall contribution. A parametric analysis was conducted to evaluate the effect of soil cohesion and friction angle, facing batter, block width, location of the reaction force acting on the face, facing backfill interface friction, facing-foundation interface friction and reinforcement length. Dimensionless design charts providing the required amount of reinforcement for lengths recommended in design standards are provided for both uniform and linearly increasing reinforcement distributions. It emerges that accounting for the presence of cohesion and the facing element can lead to significant savings in the overall level of reinforcement, and that tension cracks can be particularly detrimental to wall stability for highly cohesive soils so they cannot be overlooked in the design.  The second part of the study comprised the construction, testing and analysis of a 1.47 m high reinforced soil wall model, constructed with a frictional-cohesive soil and a modular block wall facing at LabGsy Laboratory, in São Carlos-SP, Brazil. The model wall was constructed using a dry-stacked column of masonry concrete blocks with a fully restrained toe, with an intended eight-degree facing batter. The backfill soil used was a cohesive-frictional backfill, classified as a sandy-clay. The reinforcement material comprised of 5 layers of relatively weak polyester (PET) knitted geogrid, modified to reduce its stiffness by cutting out some longitudinal ribs. Once constructed the wall was incrementally surcharged to maximum pressure of 150 kPa, limited by airbag capacity. The wall was heavily instrumented to monitor displacements at the facing, surface soil settlements, foundation earth pressures, vertical and horizontal toe loads, and displacements and strains in the soil reinforcement layers.  It was presented the materials, methods, instrumentation design and construction and test box adaptations needed to surcharging the wall model up to 150 kPa. The small magnitude of wall facing deflections measured during construction and surcharging seems to indicate the the model wall was possibility under working stress conditions throughout the entire physical test, far from reaching failure. This could be attributed to the overconsolidated state of the backfill soil due to compaction effort, to the beneficial effect of cohesion on reinforced soil wall behaviour and to the influence of the restrained wall toe to carry part of the load. This indicates that reinforced soil walls built with cohesive soil can perform well since its drainage can be guaranteed. It is expected that the contributions regarding the studies proposed herein can be a step forward in the understanding of the behaviour of GRS-RW with cohesive soils.  Finally, it was developed a series of python scripts to conduct automated numerical analysis in Plaxis 2D by using remote scripting, with the intention of laying the basis for a future numerical study involving automated parametric analysis of reinforced soil walls.
id USP_a22b922b66b8c41fdae9c94878946604
oai_identifier_str oai:teses.usp.br:tde-19012024-105815
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Geosynthetic reinforced soil retaining walls with cohesive backfillsMuros de solo reforçado com geossintéticos com solos coesivosanálise limitecohesive soilfaceamentofacinggeossintéticosgeosyntheticslimit analysismodelo reduzidoreduced modelreinforced soilsolo coesivosolo reforçado Where granular materials are not easily available, local cohesive soils are increasingly employed in geosynthetic reinforced soil walls as a cheap and sustainable option. Conventional design methods do not yet account for the beneficial effect of cohesion in reducing the amount of required reinforcement. Similarly, the contribution of the face to stability is rarely accounted for, despite plenty of experimental evidence in its favour. This thesis evaluated the influence of soil cohesion and a structural facing on the stability of reinforced soil walls by using two approaches: the first was a semi-analytical approach while the second one an experimental approach.  The semi-analytical method employed is based on limit analysis for the design of reinforced soil walls in frictional-cohesive backfills accounting for the wall contribution. A parametric analysis was conducted to evaluate the effect of soil cohesion and friction angle, facing batter, block width, location of the reaction force acting on the face, facing backfill interface friction, facing-foundation interface friction and reinforcement length. Dimensionless design charts providing the required amount of reinforcement for lengths recommended in design standards are provided for both uniform and linearly increasing reinforcement distributions. It emerges that accounting for the presence of cohesion and the facing element can lead to significant savings in the overall level of reinforcement, and that tension cracks can be particularly detrimental to wall stability for highly cohesive soils so they cannot be overlooked in the design.  The second part of the study comprised the construction, testing and analysis of a 1.47 m high reinforced soil wall model, constructed with a frictional-cohesive soil and a modular block wall facing at LabGsy Laboratory, in São Carlos-SP, Brazil. The model wall was constructed using a dry-stacked column of masonry concrete blocks with a fully restrained toe, with an intended eight-degree facing batter. The backfill soil used was a cohesive-frictional backfill, classified as a sandy-clay. The reinforcement material comprised of 5 layers of relatively weak polyester (PET) knitted geogrid, modified to reduce its stiffness by cutting out some longitudinal ribs. Once constructed the wall was incrementally surcharged to maximum pressure of 150 kPa, limited by airbag capacity. The wall was heavily instrumented to monitor displacements at the facing, surface soil settlements, foundation earth pressures, vertical and horizontal toe loads, and displacements and strains in the soil reinforcement layers.  It was presented the materials, methods, instrumentation design and construction and test box adaptations needed to surcharging the wall model up to 150 kPa. The small magnitude of wall facing deflections measured during construction and surcharging seems to indicate the the model wall was possibility under working stress conditions throughout the entire physical test, far from reaching failure. This could be attributed to the overconsolidated state of the backfill soil due to compaction effort, to the beneficial effect of cohesion on reinforced soil wall behaviour and to the influence of the restrained wall toe to carry part of the load. This indicates that reinforced soil walls built with cohesive soil can perform well since its drainage can be guaranteed. It is expected that the contributions regarding the studies proposed herein can be a step forward in the understanding of the behaviour of GRS-RW with cohesive soils.  Finally, it was developed a series of python scripts to conduct automated numerical analysis in Plaxis 2D by using remote scripting, with the intention of laying the basis for a future numerical study involving automated parametric analysis of reinforced soil walls. Quando os materiais granulares não estão facilmente disponíveis, os solos coesivos locais são cada vez mais empregados em muros de solo reforçado com geossintéticos como uma opção barata e sustentável. Os métodos convencionais de projeto ainda não levam em conta o efeito benéfico da coesão na redução da quantidade de reforço necessária. Da mesma forma, a contribuição da face para a estabilidade raramente é considerada, apesar de evidências experimentais significativas a seu favor. Esta tese avaliou a influência da coesão do solo e de uma face estrutural na estabilidade de muros de solo reforçado usando duas abordagens: uma abordagem semi-analítica e uma abordagem experimental.  O método semi-analítico empregado baseia-se na análise limite para o dimensionamento de muros de solo reforçado em solos coesivos friccionais, levando em conta a contribuição da face do muro. Uma análise paramétrica foi conduzida para avaliar o efeito da coesão do solo e do ângulo de atrito, da inclinação da face, da largura do bloco da face, da localização da força de reação que atua na face, do atrito da interface face-aterro, do atrito da interface face-fundação e do comprimento do reforço. Os ábacos de dimensionamento, adimensionais, fornecem a quantidade necessária de reforço para os comprimentos recomendados nos padrões de projeto e são apresentados para distribuições de reforço uniformes e linearmente crescentes. Conclui-se que a consideração da presença de coesão e do elemento de face na estabilidade do sistema pode levar a uma economia significativa no nível geral de reforço, e que as trincas de tração podem ser particularmente prejudiciais à estabilidade do muro reforçado em solos altamente coesivos, de modo que não podem ser negligenciadas no projeto.  A segunda parte da tese compreendeu a construção, o teste e a análise de um modelo reduzido de solo reforçado de 1,47 m de altura, construído com um solo friccional-coesivo e uma face de blocos de concreto modulares no Laboratório LabGsy, em São Carlos-SP, Brasil. O modelo foi construído usando uma coluna de blocos de concreto empilhados com o pé totalmente restringido, com uma inclinação pretendida de face de oito graus. O solo utilizado foi um material coesivo-friccional, classificado como argilo-arenoso. O material de reforço era composto por 5 camadas de geogrelha tecida de poliéster (PET) relativamente fraca, modificada para reduzir sua rigidez por meio do corte de alguns membros longitudinais. Depois de construído, o muro foi carregado de forma incremental até a pressão máxima de 150 kPa, limitada pela capacidade do airbag. O muro foi instrumentado amplamente para monitorar os deslocamentos na face, os recalques do solo na superfície, as tensões na fundação, as cargas verticais e horizontais no pé do muro e os deslocamentos e deformações nas camadas de reforço geossintético.  Foram apresentados os materiais, os métodos, o projeto e a construção da instrumentação e as adaptações da caixa de teste necessárias para sobrecarregar o modelo de muro reforçado até 150 kPa. A pequena magnitude dos deslocamentos da face do muro medida durante a construção e a fase de carregamento parece indicar que a muro estava em condições de serviço durante todo o ensaio, longe de atingir a falha. Tal observação pode ser atribuída ao estado sobreadensado do solo devido ao esforço de compactação, ao efeito benéfico da coesão no comportamento do muro de solo reforçado e à influência do pé do muro restringido para suportar parte da carga. Isso indica que os muros de solo reforçado construídos com solo coesivo podem ter bom desempenho, desde que sua drenagem possa ser garantida. Espera-se que as contribuições relativas aos estudos aqui propostos possam ser um passo adiante na compreensão do comportamento de muros de solo reforçado com geossintéticos com solos coesivos.  Finalmente, foi desenvolvida uma série de scripts em Python para realizar análises numéricas automatizadas no Plaxis 2D utilizando scripts remotos, com a intenção de lançar as bases para um futuro estudo numérico envolvendo análises paramétricas automatizadas de muros de solo reforçado.Biblioteca Digitais de Teses e Dissertações da USPSilva, Jefferson Lins daUtili, StefanoFranco, Yara Barbosa2023-10-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18132/tde-19012024-105815/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-01-24T13:46:02Zoai:teses.usp.br:tde-19012024-105815Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-24T13:46:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Geosynthetic reinforced soil retaining walls with cohesive backfills
Muros de solo reforçado com geossintéticos com solos coesivos
title Geosynthetic reinforced soil retaining walls with cohesive backfills
spellingShingle Geosynthetic reinforced soil retaining walls with cohesive backfills
Franco, Yara Barbosa
análise limite
cohesive soil
faceamento
facing
geossintéticos
geosynthetics
limit analysis
modelo reduzido
reduced model
reinforced soil
solo coesivo
solo reforçado
title_short Geosynthetic reinforced soil retaining walls with cohesive backfills
title_full Geosynthetic reinforced soil retaining walls with cohesive backfills
title_fullStr Geosynthetic reinforced soil retaining walls with cohesive backfills
title_full_unstemmed Geosynthetic reinforced soil retaining walls with cohesive backfills
title_sort Geosynthetic reinforced soil retaining walls with cohesive backfills
author Franco, Yara Barbosa
author_facet Franco, Yara Barbosa
author_role author
dc.contributor.none.fl_str_mv Silva, Jefferson Lins da
Utili, Stefano
dc.contributor.author.fl_str_mv Franco, Yara Barbosa
dc.subject.por.fl_str_mv análise limite
cohesive soil
faceamento
facing
geossintéticos
geosynthetics
limit analysis
modelo reduzido
reduced model
reinforced soil
solo coesivo
solo reforçado
topic análise limite
cohesive soil
faceamento
facing
geossintéticos
geosynthetics
limit analysis
modelo reduzido
reduced model
reinforced soil
solo coesivo
solo reforçado
description  Where granular materials are not easily available, local cohesive soils are increasingly employed in geosynthetic reinforced soil walls as a cheap and sustainable option. Conventional design methods do not yet account for the beneficial effect of cohesion in reducing the amount of required reinforcement. Similarly, the contribution of the face to stability is rarely accounted for, despite plenty of experimental evidence in its favour. This thesis evaluated the influence of soil cohesion and a structural facing on the stability of reinforced soil walls by using two approaches: the first was a semi-analytical approach while the second one an experimental approach.  The semi-analytical method employed is based on limit analysis for the design of reinforced soil walls in frictional-cohesive backfills accounting for the wall contribution. A parametric analysis was conducted to evaluate the effect of soil cohesion and friction angle, facing batter, block width, location of the reaction force acting on the face, facing backfill interface friction, facing-foundation interface friction and reinforcement length. Dimensionless design charts providing the required amount of reinforcement for lengths recommended in design standards are provided for both uniform and linearly increasing reinforcement distributions. It emerges that accounting for the presence of cohesion and the facing element can lead to significant savings in the overall level of reinforcement, and that tension cracks can be particularly detrimental to wall stability for highly cohesive soils so they cannot be overlooked in the design.  The second part of the study comprised the construction, testing and analysis of a 1.47 m high reinforced soil wall model, constructed with a frictional-cohesive soil and a modular block wall facing at LabGsy Laboratory, in São Carlos-SP, Brazil. The model wall was constructed using a dry-stacked column of masonry concrete blocks with a fully restrained toe, with an intended eight-degree facing batter. The backfill soil used was a cohesive-frictional backfill, classified as a sandy-clay. The reinforcement material comprised of 5 layers of relatively weak polyester (PET) knitted geogrid, modified to reduce its stiffness by cutting out some longitudinal ribs. Once constructed the wall was incrementally surcharged to maximum pressure of 150 kPa, limited by airbag capacity. The wall was heavily instrumented to monitor displacements at the facing, surface soil settlements, foundation earth pressures, vertical and horizontal toe loads, and displacements and strains in the soil reinforcement layers.  It was presented the materials, methods, instrumentation design and construction and test box adaptations needed to surcharging the wall model up to 150 kPa. The small magnitude of wall facing deflections measured during construction and surcharging seems to indicate the the model wall was possibility under working stress conditions throughout the entire physical test, far from reaching failure. This could be attributed to the overconsolidated state of the backfill soil due to compaction effort, to the beneficial effect of cohesion on reinforced soil wall behaviour and to the influence of the restrained wall toe to carry part of the load. This indicates that reinforced soil walls built with cohesive soil can perform well since its drainage can be guaranteed. It is expected that the contributions regarding the studies proposed herein can be a step forward in the understanding of the behaviour of GRS-RW with cohesive soils.  Finally, it was developed a series of python scripts to conduct automated numerical analysis in Plaxis 2D by using remote scripting, with the intention of laying the basis for a future numerical study involving automated parametric analysis of reinforced soil walls.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18132/tde-19012024-105815/
url https://www.teses.usp.br/teses/disponiveis/18/18132/tde-19012024-105815/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090850939994112