Evaluation of molecular profiles and microenvironments in B-cell lymphomas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/17/17154/tde-08092022-163315/ |
Resumo: | B-cell lymphoma comprises a heterogeneous group of malignancies that arise from a specific developmental stage of B-cells and shape of their microenvironment as depicted by the distinct morphological features. Several studies have shown biologically meaningful subgroups, which often coincides with either good or bad response to therapy. However, most of these studies have not been validated in independent cohorts and for several B-cell lymphoma subtypes available data are scarce. Thus, the aim of this project was to identify the genes associated with specific lymphoma signatures (either tumor related or microenvironment), characterize their expression profiles, and associate these profiles with biological functions and clinical outcomes. We characterized an in-depth gene expression pattern of two groups of B-cell lymphomas. The first was the classical Hodgkin lymphoma which has highly abundant CD4+ T cells in the vicinity of tumor cells are considered essential for tumor cell survival but are ill-defined. Although they are activated, they consistently lack expression of activation marker CD26. We compared sorted CD4+CD26- and CD4+CD26+ T cells lymph node cell suspensions by RNA sequencing. This revealed that CD4+CD26- T cells are antigen experienced. This can be explained by the expression of exhaustion associated transcription factors TOX and TOX2, immune checkpoints PDCD1 and CD200, and chemokine CXCL13, which were amongst the 100 significantly enriched genes in comparison with the CD4+CD26+ T cells. This population is likely a main contributor to the very high response rates to immune checkpoint inhibitors in cHL. The second group was diffuse large B-cell lymphoma which multiple gene expression profiles have been identified but besides the cell of origin (COO) classifier, no signatures have been reproduced in independent studies or evaluated for capturing distinct aspects of DLBCL biology. So, we reproduced 4 signatures in 175 samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, oxidative phosphorylation, and immune response. Performance of our classification algorithms were confirmed in the original datasets. We were able to validate three of the four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell (GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYChigh signature was observed more frequently in ABC as compared to GCB DLBCL (68% vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative phosphorylation clusters could not be reproduced. The overlap of COO, consensus cluster and MYC activity score differentiated six gene expression clusters: GCB/MYChigh (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYChigh (25%), and ABC/MYC-low (7%). In conclusion, this study lead to identification of new actionable molecular targets for specific patient subgroups. This may help in the development of more precise and effective therapeutic strategies for B-cell lymphoma patients in the future. |
id |
USP_a623aa9c0439dbc195bbacfdaf6321fb |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-08092022-163315 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Evaluation of molecular profiles and microenvironments in B-cell lymphomasAvaliação de perfis moleculares e microambientes em linfomas de células BB-cell lymphomaBioinformáticaBioinformaticsGene expression profileLinfoma de células BPerfil de expressão gênicaB-cell lymphoma comprises a heterogeneous group of malignancies that arise from a specific developmental stage of B-cells and shape of their microenvironment as depicted by the distinct morphological features. Several studies have shown biologically meaningful subgroups, which often coincides with either good or bad response to therapy. However, most of these studies have not been validated in independent cohorts and for several B-cell lymphoma subtypes available data are scarce. Thus, the aim of this project was to identify the genes associated with specific lymphoma signatures (either tumor related or microenvironment), characterize their expression profiles, and associate these profiles with biological functions and clinical outcomes. We characterized an in-depth gene expression pattern of two groups of B-cell lymphomas. The first was the classical Hodgkin lymphoma which has highly abundant CD4+ T cells in the vicinity of tumor cells are considered essential for tumor cell survival but are ill-defined. Although they are activated, they consistently lack expression of activation marker CD26. We compared sorted CD4+CD26- and CD4+CD26+ T cells lymph node cell suspensions by RNA sequencing. This revealed that CD4+CD26- T cells are antigen experienced. This can be explained by the expression of exhaustion associated transcription factors TOX and TOX2, immune checkpoints PDCD1 and CD200, and chemokine CXCL13, which were amongst the 100 significantly enriched genes in comparison with the CD4+CD26+ T cells. This population is likely a main contributor to the very high response rates to immune checkpoint inhibitors in cHL. The second group was diffuse large B-cell lymphoma which multiple gene expression profiles have been identified but besides the cell of origin (COO) classifier, no signatures have been reproduced in independent studies or evaluated for capturing distinct aspects of DLBCL biology. So, we reproduced 4 signatures in 175 samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, oxidative phosphorylation, and immune response. Performance of our classification algorithms were confirmed in the original datasets. We were able to validate three of the four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell (GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYChigh signature was observed more frequently in ABC as compared to GCB DLBCL (68% vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative phosphorylation clusters could not be reproduced. The overlap of COO, consensus cluster and MYC activity score differentiated six gene expression clusters: GCB/MYChigh (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYChigh (25%), and ABC/MYC-low (7%). In conclusion, this study lead to identification of new actionable molecular targets for specific patient subgroups. This may help in the development of more precise and effective therapeutic strategies for B-cell lymphoma patients in the future.O linfoma de células B compreende um grupo heterogêneo de tumores que surgem a partir de diferentes estágios de desenvolvimento das células B e do seu microambiente celular, retratando características morfológicas distintas. Vários estudos mostraram subgrupos biológicos importantes, que muitas vezes coincidem com resposta à terapia. No entanto, a maioria desses estudos não foram validados em coortes independentes ou os dados disponíveis são escassos. Assim, o objetivo deste projeto foi identificar os genes associados as assinaturas específicas de linfoma (relacionadas ao tumor e ao microambiente), caracterizar seus perfis de expressão e associar esses perfis à funções biológicas e desfechos clínicos. Caracterizamos padrões de expressão gênica de dois subtipos de linfomas de células B. O primeiro foi o linfoma de Hodgkin clássico (LHc) que possui células T CD4+ altamente abundantes nas proximidades das células tumorais, consideradas essenciais para a sobrevivência das células tumorais, mas são mal definidas. Embora sejam ativadas, elas podem não expressar o marcador de ativação CD26. Assim, comparamos suspensões de células T de linfonodo CD4+CD26- e CD4+CD26+ por RNA-seq que revelou que as células T CD4+CD26- foram apresentadas à antígenos provavelmente pela expressão de fatores de transcrição associados à exaustão TOX e TOX2, checkpoints imunológicos PDCD1 e CD200 e quimiocina CXCL13, que estavam entre os 100 genes significativamente enriquecidos em comparação com as células T CD4+CD26+. Esta população é provavelmente um dos principais contribuintes para as taxas de resposta muito altas aos inibidores de checkpoint imunológico em LHc. O segundo grupo foi o linfoma difuso de grandes células B (LDGCB), onde além do classificador de células de origem (CO), nenhuma assinatura foi reproduzida em estudos independentes ou avaliada para capturar aspectos distintos da biologia de LDGCB. Assim, reproduzimos 4 assinaturas em 175 amostras da corte HOVON-84 em um painel de 117 genes usando a plataforma NanoString. As quatro assinaturas de genes capturam a CO, a atividade do gene MYC, a sinalização do receptor da célula B, a fosforilação oxidativa e a resposta imune. O desempenho de nossos algoritmos de classificação foi confirmado nos conjuntos de dados originais. Conseguimos validar três das quatro assinaturas. O algoritmo CO resultou em 94 (54%) casos relacionados à células B do centro germinativo (CGB), 58 (33%) de células B ativadas (CBA) e 23 (13%) casos não classificados. O classificador MYC revelou 77 casos associados ao escore de alta atividade MYC (44%) e essa assinatura foi observada com mais frequência no ABC em comparação ao GCB LDGCB (68% vs. 32%, p < 0,00001). A assinatura da resposta do hospedeiro (RH) do agrupamento consenso estava presente em 55 (31%) pacientes, enquanto os demais agrupamentos não puderam ser reproduzidos. A sobreposição entre CO, grupo consenso e atividade de MYC diferenciou seis clusters de expressão gênica: CGB/MYC-alto (12%), CGB/RH (16%), CGB/não-RH (27%), CO-não classificado (13%) %), CBA/MYC-alto (25%) e CBA/MYC-baixo (7%). Em conclusão, este estudo identificou novos alvos moleculares acionáveis para subgrupos específicos de pacientes, o que pode ajudar no desenvolvimento de estratégias terapêuticas mais precisas e eficazes do linfoma de células B no futuro.Biblioteca Digitais de Teses e Dissertações da USPSilva Junior, Wilson Araújo daPlaça, Jessica Rodrigues2022-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17154/tde-08092022-163315/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-10-31T15:30:23Zoai:teses.usp.br:tde-08092022-163315Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-10-31T15:30:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas Avaliação de perfis moleculares e microambientes em linfomas de células B |
title |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas |
spellingShingle |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas Plaça, Jessica Rodrigues B-cell lymphoma Bioinformática Bioinformatics Gene expression profile Linfoma de células B Perfil de expressão gênica |
title_short |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas |
title_full |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas |
title_fullStr |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas |
title_full_unstemmed |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas |
title_sort |
Evaluation of molecular profiles and microenvironments in B-cell lymphomas |
author |
Plaça, Jessica Rodrigues |
author_facet |
Plaça, Jessica Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva Junior, Wilson Araújo da |
dc.contributor.author.fl_str_mv |
Plaça, Jessica Rodrigues |
dc.subject.por.fl_str_mv |
B-cell lymphoma Bioinformática Bioinformatics Gene expression profile Linfoma de células B Perfil de expressão gênica |
topic |
B-cell lymphoma Bioinformática Bioinformatics Gene expression profile Linfoma de células B Perfil de expressão gênica |
description |
B-cell lymphoma comprises a heterogeneous group of malignancies that arise from a specific developmental stage of B-cells and shape of their microenvironment as depicted by the distinct morphological features. Several studies have shown biologically meaningful subgroups, which often coincides with either good or bad response to therapy. However, most of these studies have not been validated in independent cohorts and for several B-cell lymphoma subtypes available data are scarce. Thus, the aim of this project was to identify the genes associated with specific lymphoma signatures (either tumor related or microenvironment), characterize their expression profiles, and associate these profiles with biological functions and clinical outcomes. We characterized an in-depth gene expression pattern of two groups of B-cell lymphomas. The first was the classical Hodgkin lymphoma which has highly abundant CD4+ T cells in the vicinity of tumor cells are considered essential for tumor cell survival but are ill-defined. Although they are activated, they consistently lack expression of activation marker CD26. We compared sorted CD4+CD26- and CD4+CD26+ T cells lymph node cell suspensions by RNA sequencing. This revealed that CD4+CD26- T cells are antigen experienced. This can be explained by the expression of exhaustion associated transcription factors TOX and TOX2, immune checkpoints PDCD1 and CD200, and chemokine CXCL13, which were amongst the 100 significantly enriched genes in comparison with the CD4+CD26+ T cells. This population is likely a main contributor to the very high response rates to immune checkpoint inhibitors in cHL. The second group was diffuse large B-cell lymphoma which multiple gene expression profiles have been identified but besides the cell of origin (COO) classifier, no signatures have been reproduced in independent studies or evaluated for capturing distinct aspects of DLBCL biology. So, we reproduced 4 signatures in 175 samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, oxidative phosphorylation, and immune response. Performance of our classification algorithms were confirmed in the original datasets. We were able to validate three of the four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell (GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYChigh signature was observed more frequently in ABC as compared to GCB DLBCL (68% vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative phosphorylation clusters could not be reproduced. The overlap of COO, consensus cluster and MYC activity score differentiated six gene expression clusters: GCB/MYChigh (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYChigh (25%), and ABC/MYC-low (7%). In conclusion, this study lead to identification of new actionable molecular targets for specific patient subgroups. This may help in the development of more precise and effective therapeutic strategies for B-cell lymphoma patients in the future. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/17/17154/tde-08092022-163315/ |
url |
https://www.teses.usp.br/teses/disponiveis/17/17154/tde-08092022-163315/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256811799838720 |