Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho

Detalhes bibliográficos
Autor(a) principal: Oliveira, Marcos William da Silva
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27012017-102243/
Resumo: O milho é uma cultura anual importante para diferentes setores da economia mundial. Sua produção é principalmente utilizada para consumo humano e animal, além de indústrias química e de biocombustíveis. Com o aumento da demanda mundial, há a necessidade de aumento da produtividade com diminuição de custos, tanto econômicos como ambientais. Isso leva a investimentos para maior tecnificação do cultivo, seleção de diferentes cultivares e busca por maior eficiência nutricional. Nesse contexto insere-se este doutorado, o qual propõe metodologia para diagnóstico nutricional precoce em culturas de milho. Para tanto, objetiva-se melhorar um sistema de classificação nutricional por imagem de folhas, analisar a invariância deste diagnóstico a diferentes híbridos de milho e identificar características que permitam uma análise em estágio precoce do ciclo de crescimento. Além disso, os estudos são realizados sobre experimentos de cultivos em ambiente controlado e em ambiente comercial. A análise das imagens é realizada pela extração de características de textura e, consequentemente, resulta no desenvolvimento de metodologias inovadoras nesta área. Especificamente, são propostas duas metodologias na área de descritores fractais e usando transformação local jet. Os resultados da diagnose nutricional demonstram como é promissora a pesquisa, uma vez que obtém-se 98% de acerto na classificação de níveis nutricionais de nitrogênio ou potássio em etapa chave para correção nutricional em um mesmo ciclo da cultura. Outra abordagem proposta, ainda promove a identificação e visualização de sintomas em estágio em que esses sintomas são considerados ocultos, comprovando a eficácia do reconhecimento de padrões de textura.
id USP_a6b1a93eaf22bad59c45e73156f77b84
oai_identifier_str oai:teses.usp.br:tde-27012017-102243
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milhoTexture analysis on leaf images for early nutritional diagnosis in maize cultureDigital imageImagem digitalMaize (emph Zea Mays L.)Milho (Zea Mays L.)Nutrição vegetalPattern recognitionPlant nutritionReconhecimento de padrõesTexturaTextureO milho é uma cultura anual importante para diferentes setores da economia mundial. Sua produção é principalmente utilizada para consumo humano e animal, além de indústrias química e de biocombustíveis. Com o aumento da demanda mundial, há a necessidade de aumento da produtividade com diminuição de custos, tanto econômicos como ambientais. Isso leva a investimentos para maior tecnificação do cultivo, seleção de diferentes cultivares e busca por maior eficiência nutricional. Nesse contexto insere-se este doutorado, o qual propõe metodologia para diagnóstico nutricional precoce em culturas de milho. Para tanto, objetiva-se melhorar um sistema de classificação nutricional por imagem de folhas, analisar a invariância deste diagnóstico a diferentes híbridos de milho e identificar características que permitam uma análise em estágio precoce do ciclo de crescimento. Além disso, os estudos são realizados sobre experimentos de cultivos em ambiente controlado e em ambiente comercial. A análise das imagens é realizada pela extração de características de textura e, consequentemente, resulta no desenvolvimento de metodologias inovadoras nesta área. Especificamente, são propostas duas metodologias na área de descritores fractais e usando transformação local jet. Os resultados da diagnose nutricional demonstram como é promissora a pesquisa, uma vez que obtém-se 98% de acerto na classificação de níveis nutricionais de nitrogênio ou potássio em etapa chave para correção nutricional em um mesmo ciclo da cultura. Outra abordagem proposta, ainda promove a identificação e visualização de sintomas em estágio em que esses sintomas são considerados ocultos, comprovando a eficácia do reconhecimento de padrões de textura.The maize is an important annual crop for different sectors of the world economy. Its production is mainly used for human and animal consumption as well as chemical and biofuels industry. Because of the increase in world demand, there is the need for increased productivity with lower costs, both economic and ecological. This leads to greater investments in technification of cultivation, selection of different cultivars and research to improve nutritional efficiency. In this context, this PhD research proposes a methodology for early nutritional diagnosis in maize crops. Therefore, it is aimed to improve a nutritional classification system for image of leaves, analysis the invariance of this diagnostic at different maize hybrids and identifying features to provide an analysis at an early stage of the growth cycle. Furthermore, studies are conducted on crops under controlled environment and in a commercial environment. The image analysis is performed by texture feature extracting and, consequently, results in innovative methodologies in this area. Specifically, two methods are proposed in the area of fractal descriptors and using local jet transformation. The results of nutritional diagnosis demonstrate how research is promising, due to the 98% success rate in the classification of nutritional levels of nitrogen or potassium, in a key stage for nutritional correction in the same crop cycle. Another proposed approach promotes the symptoms identification and visualization in a stage where these symptoms are considered hidden, proving the effectiveness of the pattern recognition based on texture features.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezOliveira, Marcos William da Silva2016-01-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-27012017-102243/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-27012017-102243Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
Texture analysis on leaf images for early nutritional diagnosis in maize culture
title Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
spellingShingle Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
Oliveira, Marcos William da Silva
Digital image
Imagem digital
Maize (emph Zea Mays L.)
Milho (Zea Mays L.)
Nutrição vegetal
Pattern recognition
Plant nutrition
Reconhecimento de padrões
Textura
Texture
title_short Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
title_full Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
title_fullStr Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
title_full_unstemmed Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
title_sort Análise de textura em imagens de folha para diagnose nutricional precoce em culturas de milho
author Oliveira, Marcos William da Silva
author_facet Oliveira, Marcos William da Silva
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Oliveira, Marcos William da Silva
dc.subject.por.fl_str_mv Digital image
Imagem digital
Maize (emph Zea Mays L.)
Milho (Zea Mays L.)
Nutrição vegetal
Pattern recognition
Plant nutrition
Reconhecimento de padrões
Textura
Texture
topic Digital image
Imagem digital
Maize (emph Zea Mays L.)
Milho (Zea Mays L.)
Nutrição vegetal
Pattern recognition
Plant nutrition
Reconhecimento de padrões
Textura
Texture
description O milho é uma cultura anual importante para diferentes setores da economia mundial. Sua produção é principalmente utilizada para consumo humano e animal, além de indústrias química e de biocombustíveis. Com o aumento da demanda mundial, há a necessidade de aumento da produtividade com diminuição de custos, tanto econômicos como ambientais. Isso leva a investimentos para maior tecnificação do cultivo, seleção de diferentes cultivares e busca por maior eficiência nutricional. Nesse contexto insere-se este doutorado, o qual propõe metodologia para diagnóstico nutricional precoce em culturas de milho. Para tanto, objetiva-se melhorar um sistema de classificação nutricional por imagem de folhas, analisar a invariância deste diagnóstico a diferentes híbridos de milho e identificar características que permitam uma análise em estágio precoce do ciclo de crescimento. Além disso, os estudos são realizados sobre experimentos de cultivos em ambiente controlado e em ambiente comercial. A análise das imagens é realizada pela extração de características de textura e, consequentemente, resulta no desenvolvimento de metodologias inovadoras nesta área. Especificamente, são propostas duas metodologias na área de descritores fractais e usando transformação local jet. Os resultados da diagnose nutricional demonstram como é promissora a pesquisa, uma vez que obtém-se 98% de acerto na classificação de níveis nutricionais de nitrogênio ou potássio em etapa chave para correção nutricional em um mesmo ciclo da cultura. Outra abordagem proposta, ainda promove a identificação e visualização de sintomas em estágio em que esses sintomas são considerados ocultos, comprovando a eficácia do reconhecimento de padrões de textura.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27012017-102243/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-27012017-102243/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257390462795776