Topological Complexity and the Lusternik-Schnirelmann Category

Detalhes bibliográficos
Autor(a) principal: Lier, Matias de Jong van
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
Resumo: In recent years, a new field integrating robotics and topology was born, referred to by many as Topological Robotics, in which the main strategy is to use algebraic topological tools to get some insight into robotics problems. One of those problems is called the robot motion planning problem and is the main motivation for this work. We present an in-depth study of Topological Complexity, discussing how it relates to the Motion Planning Problem, and the main methods for computing it for CW complexes and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik- Schnirelmann category is introduced due to its connection with Topological complexity, both being particular cases of the more general concept of the Schwarz Genus of a fibration.
id USP_a6f3f66e1b26cf54fdccc4043cc77d7c
oai_identifier_str oai:teses.usp.br:tde-09092021-104209
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Topological Complexity and the Lusternik-Schnirelmann CategoryComplexidade Topológica e Categoria de Lusternik-SchnirelmannAlgebraic topologyCategoria de Lusternik-SchnirelmannComplexidade topológicaFibrewise topologyGenus de SchwarzLusternik-Schnirelmann categoryMotion planning problemProblema do planejamento de movimentoSchwarz genusTopologia algébricaTopologia fibracionalTopological complexityIn recent years, a new field integrating robotics and topology was born, referred to by many as Topological Robotics, in which the main strategy is to use algebraic topological tools to get some insight into robotics problems. One of those problems is called the robot motion planning problem and is the main motivation for this work. We present an in-depth study of Topological Complexity, discussing how it relates to the Motion Planning Problem, and the main methods for computing it for CW complexes and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik- Schnirelmann category is introduced due to its connection with Topological complexity, both being particular cases of the more general concept of the Schwarz Genus of a fibration.Não disponívelBiblioteca Digitais de Teses e Dissertações da USPMattos, Denise deLier, Matias de Jong van2021-06-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-09T13:49:02Zoai:teses.usp.br:tde-09092021-104209Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-09T13:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Topological Complexity and the Lusternik-Schnirelmann Category
Complexidade Topológica e Categoria de Lusternik-Schnirelmann
title Topological Complexity and the Lusternik-Schnirelmann Category
spellingShingle Topological Complexity and the Lusternik-Schnirelmann Category
Lier, Matias de Jong van
Algebraic topology
Categoria de Lusternik-Schnirelmann
Complexidade topológica
Fibrewise topology
Genus de Schwarz
Lusternik-Schnirelmann category
Motion planning problem
Problema do planejamento de movimento
Schwarz genus
Topologia algébrica
Topologia fibracional
Topological complexity
title_short Topological Complexity and the Lusternik-Schnirelmann Category
title_full Topological Complexity and the Lusternik-Schnirelmann Category
title_fullStr Topological Complexity and the Lusternik-Schnirelmann Category
title_full_unstemmed Topological Complexity and the Lusternik-Schnirelmann Category
title_sort Topological Complexity and the Lusternik-Schnirelmann Category
author Lier, Matias de Jong van
author_facet Lier, Matias de Jong van
author_role author
dc.contributor.none.fl_str_mv Mattos, Denise de
dc.contributor.author.fl_str_mv Lier, Matias de Jong van
dc.subject.por.fl_str_mv Algebraic topology
Categoria de Lusternik-Schnirelmann
Complexidade topológica
Fibrewise topology
Genus de Schwarz
Lusternik-Schnirelmann category
Motion planning problem
Problema do planejamento de movimento
Schwarz genus
Topologia algébrica
Topologia fibracional
Topological complexity
topic Algebraic topology
Categoria de Lusternik-Schnirelmann
Complexidade topológica
Fibrewise topology
Genus de Schwarz
Lusternik-Schnirelmann category
Motion planning problem
Problema do planejamento de movimento
Schwarz genus
Topologia algébrica
Topologia fibracional
Topological complexity
description In recent years, a new field integrating robotics and topology was born, referred to by many as Topological Robotics, in which the main strategy is to use algebraic topological tools to get some insight into robotics problems. One of those problems is called the robot motion planning problem and is the main motivation for this work. We present an in-depth study of Topological Complexity, discussing how it relates to the Motion Planning Problem, and the main methods for computing it for CW complexes and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik- Schnirelmann category is introduced due to its connection with Topological complexity, both being particular cases of the more general concept of the Schwarz Genus of a fibration.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
url https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256840733196288