Topological Complexity and the Lusternik-Schnirelmann Category
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/ |
Resumo: | In recent years, a new field integrating robotics and topology was born, referred to by many as Topological Robotics, in which the main strategy is to use algebraic topological tools to get some insight into robotics problems. One of those problems is called the robot motion planning problem and is the main motivation for this work. We present an in-depth study of Topological Complexity, discussing how it relates to the Motion Planning Problem, and the main methods for computing it for CW complexes and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik- Schnirelmann category is introduced due to its connection with Topological complexity, both being particular cases of the more general concept of the Schwarz Genus of a fibration. |
id |
USP_a6f3f66e1b26cf54fdccc4043cc77d7c |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09092021-104209 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Topological Complexity and the Lusternik-Schnirelmann CategoryComplexidade Topológica e Categoria de Lusternik-SchnirelmannAlgebraic topologyCategoria de Lusternik-SchnirelmannComplexidade topológicaFibrewise topologyGenus de SchwarzLusternik-Schnirelmann categoryMotion planning problemProblema do planejamento de movimentoSchwarz genusTopologia algébricaTopologia fibracionalTopological complexityIn recent years, a new field integrating robotics and topology was born, referred to by many as Topological Robotics, in which the main strategy is to use algebraic topological tools to get some insight into robotics problems. One of those problems is called the robot motion planning problem and is the main motivation for this work. We present an in-depth study of Topological Complexity, discussing how it relates to the Motion Planning Problem, and the main methods for computing it for CW complexes and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik- Schnirelmann category is introduced due to its connection with Topological complexity, both being particular cases of the more general concept of the Schwarz Genus of a fibration.Não disponívelBiblioteca Digitais de Teses e Dissertações da USPMattos, Denise deLier, Matias de Jong van2021-06-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-09-09T13:49:02Zoai:teses.usp.br:tde-09092021-104209Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-09-09T13:49:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Topological Complexity and the Lusternik-Schnirelmann Category Complexidade Topológica e Categoria de Lusternik-Schnirelmann |
title |
Topological Complexity and the Lusternik-Schnirelmann Category |
spellingShingle |
Topological Complexity and the Lusternik-Schnirelmann Category Lier, Matias de Jong van Algebraic topology Categoria de Lusternik-Schnirelmann Complexidade topológica Fibrewise topology Genus de Schwarz Lusternik-Schnirelmann category Motion planning problem Problema do planejamento de movimento Schwarz genus Topologia algébrica Topologia fibracional Topological complexity |
title_short |
Topological Complexity and the Lusternik-Schnirelmann Category |
title_full |
Topological Complexity and the Lusternik-Schnirelmann Category |
title_fullStr |
Topological Complexity and the Lusternik-Schnirelmann Category |
title_full_unstemmed |
Topological Complexity and the Lusternik-Schnirelmann Category |
title_sort |
Topological Complexity and the Lusternik-Schnirelmann Category |
author |
Lier, Matias de Jong van |
author_facet |
Lier, Matias de Jong van |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mattos, Denise de |
dc.contributor.author.fl_str_mv |
Lier, Matias de Jong van |
dc.subject.por.fl_str_mv |
Algebraic topology Categoria de Lusternik-Schnirelmann Complexidade topológica Fibrewise topology Genus de Schwarz Lusternik-Schnirelmann category Motion planning problem Problema do planejamento de movimento Schwarz genus Topologia algébrica Topologia fibracional Topological complexity |
topic |
Algebraic topology Categoria de Lusternik-Schnirelmann Complexidade topológica Fibrewise topology Genus de Schwarz Lusternik-Schnirelmann category Motion planning problem Problema do planejamento de movimento Schwarz genus Topologia algébrica Topologia fibracional Topological complexity |
description |
In recent years, a new field integrating robotics and topology was born, referred to by many as Topological Robotics, in which the main strategy is to use algebraic topological tools to get some insight into robotics problems. One of those problems is called the robot motion planning problem and is the main motivation for this work. We present an in-depth study of Topological Complexity, discussing how it relates to the Motion Planning Problem, and the main methods for computing it for CW complexes and Smooth Manifolds, spaces of great interest in robotics. The concept of Lusternik- Schnirelmann category is introduced due to its connection with Topological complexity, both being particular cases of the more general concept of the Schwarz Genus of a fibration. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256840733196288 |