Modelos Box-Cox simétricos e aplicações a dados nutricionais

Detalhes bibliográficos
Autor(a) principal: Ghantous, Giovana Fumes
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/
Resumo: Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reais
id USP_a78dcd2caa6c9c4518c9c4f16a03372a
oai_identifier_str oai:teses.usp.br:tde-20230727-112920
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos Box-Cox simétricos e aplicações a dados nutricionaisnot availableEstatística AplicadaDados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reaisnot availableBiblioteca Digitais de Teses e Dissertações da USPFerrari, Sílvia Lopes de PaulaGhantous, Giovana Fumes2015-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T17:35:02Zoai:teses.usp.br:tde-20230727-112920Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T17:35:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos Box-Cox simétricos e aplicações a dados nutricionais
not available
title Modelos Box-Cox simétricos e aplicações a dados nutricionais
spellingShingle Modelos Box-Cox simétricos e aplicações a dados nutricionais
Ghantous, Giovana Fumes
Estatística Aplicada
title_short Modelos Box-Cox simétricos e aplicações a dados nutricionais
title_full Modelos Box-Cox simétricos e aplicações a dados nutricionais
title_fullStr Modelos Box-Cox simétricos e aplicações a dados nutricionais
title_full_unstemmed Modelos Box-Cox simétricos e aplicações a dados nutricionais
title_sort Modelos Box-Cox simétricos e aplicações a dados nutricionais
author Ghantous, Giovana Fumes
author_facet Ghantous, Giovana Fumes
author_role author
dc.contributor.none.fl_str_mv Ferrari, Sílvia Lopes de Paula
dc.contributor.author.fl_str_mv Ghantous, Giovana Fumes
dc.subject.por.fl_str_mv Estatística Aplicada
topic Estatística Aplicada
description Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reais
publishDate 2015
dc.date.none.fl_str_mv 2015-02-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/
url https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257218399862784