Modelos Box-Cox simétricos e aplicações a dados nutricionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/ |
Resumo: | Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reais |
id |
USP_a78dcd2caa6c9c4518c9c4f16a03372a |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20230727-112920 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos Box-Cox simétricos e aplicações a dados nutricionaisnot availableEstatística AplicadaDados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reaisnot availableBiblioteca Digitais de Teses e Dissertações da USPFerrari, Sílvia Lopes de PaulaGhantous, Giovana Fumes2015-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T17:35:02Zoai:teses.usp.br:tde-20230727-112920Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T17:35:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos Box-Cox simétricos e aplicações a dados nutricionais not available |
title |
Modelos Box-Cox simétricos e aplicações a dados nutricionais |
spellingShingle |
Modelos Box-Cox simétricos e aplicações a dados nutricionais Ghantous, Giovana Fumes Estatística Aplicada |
title_short |
Modelos Box-Cox simétricos e aplicações a dados nutricionais |
title_full |
Modelos Box-Cox simétricos e aplicações a dados nutricionais |
title_fullStr |
Modelos Box-Cox simétricos e aplicações a dados nutricionais |
title_full_unstemmed |
Modelos Box-Cox simétricos e aplicações a dados nutricionais |
title_sort |
Modelos Box-Cox simétricos e aplicações a dados nutricionais |
author |
Ghantous, Giovana Fumes |
author_facet |
Ghantous, Giovana Fumes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferrari, Sílvia Lopes de Paula |
dc.contributor.author.fl_str_mv |
Ghantous, Giovana Fumes |
dc.subject.por.fl_str_mv |
Estatística Aplicada |
topic |
Estatística Aplicada |
description |
Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reais |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/ |
url |
https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-112920/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257218399862784 |