Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência

Detalhes bibliográficos
Autor(a) principal: Silva, Felipe Rodrigues da
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-13052024-150236/
Resumo: A análise de sobrevivência emerge como uma valiosa área da estatística para examinar o tempo até a ocorrência de eventos de interesse. Diversos modelos foram concebidos e aplicados em diversas áreas tais como: Medicina, Engenharia, Biomedicina e Ciências Sociais. O modelo proposto por Cox (1972) destaca-se como um dos mais reconhecidos e empregados na análise de dados de sobrevivência. No entanto, é importante notar que esse modelo parte da suposição de que os riscos são proporcionais, uma premissa que nem sempre é justificável. Um modelo alternativo aos modelos de riscos proporcionais de Cox é o modelo de risco aditivo que inicialmente foi proposto por Aalen (1980). No modelo aditivo o efeito das covariáveis é inserido aditivamente à função de risco de base. Em muitas situações existem fatores não observados no estudo que influenciam o tempo de sobrevivência, dessa forma para dados de sobrevivência univariados um efeito aleatório, denominado por Aalen (1978) e Clayton (1978) como termo de fragilidade, pode ser inserido de forma aditiva ou multiplicativa para estimar essa heterogeneidade não observada. Neste contexto, o termo de fragilidade inserido aditivamente na modelagem de risco para análise de dados univariados e dados de eventos recorrentes foi estudado e aplicado a dados reais. Além disso, uma proposta de estimador para as fragilidades individuais foi apresentada. Também um modelo de fração de cura com fragilidade aditiva foi proposto e aplicado a dados reais, onde esse modelo é aplicável a estudos em que existem indivíduos que são considerados imunes, curados ou não suscetíveis ao evento de interesse. Uma nova modelagem de risco aditivo alternativa também foi proposta baseada em Gupta (2016). A abordagem de máxima verosimilhança foi utilizada para estimação dos parâmetros dos modelos estudados, e estudos via simulação de Monte Carlo foram desenvolvidos para avaliar o comportamento dos estimadores de máxima verossimilhança.
id USP_a7ba76a5a25c3c75b3468393bbf93821
oai_identifier_str oai:teses.usp.br:tde-13052024-150236
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de SobrevivênciaNew Additive Risk Modeling with Frailty for Survival Data AnalysisAdditive hazard modelAnálise de sobrevivênciaCure fractionEventos recorrentesFração de curaFragilidadeFrailtyModelo de risco aditivoRecurrent eventsSurvival analysisA análise de sobrevivência emerge como uma valiosa área da estatística para examinar o tempo até a ocorrência de eventos de interesse. Diversos modelos foram concebidos e aplicados em diversas áreas tais como: Medicina, Engenharia, Biomedicina e Ciências Sociais. O modelo proposto por Cox (1972) destaca-se como um dos mais reconhecidos e empregados na análise de dados de sobrevivência. No entanto, é importante notar que esse modelo parte da suposição de que os riscos são proporcionais, uma premissa que nem sempre é justificável. Um modelo alternativo aos modelos de riscos proporcionais de Cox é o modelo de risco aditivo que inicialmente foi proposto por Aalen (1980). No modelo aditivo o efeito das covariáveis é inserido aditivamente à função de risco de base. Em muitas situações existem fatores não observados no estudo que influenciam o tempo de sobrevivência, dessa forma para dados de sobrevivência univariados um efeito aleatório, denominado por Aalen (1978) e Clayton (1978) como termo de fragilidade, pode ser inserido de forma aditiva ou multiplicativa para estimar essa heterogeneidade não observada. Neste contexto, o termo de fragilidade inserido aditivamente na modelagem de risco para análise de dados univariados e dados de eventos recorrentes foi estudado e aplicado a dados reais. Além disso, uma proposta de estimador para as fragilidades individuais foi apresentada. Também um modelo de fração de cura com fragilidade aditiva foi proposto e aplicado a dados reais, onde esse modelo é aplicável a estudos em que existem indivíduos que são considerados imunes, curados ou não suscetíveis ao evento de interesse. Uma nova modelagem de risco aditivo alternativa também foi proposta baseada em Gupta (2016). A abordagem de máxima verosimilhança foi utilizada para estimação dos parâmetros dos modelos estudados, e estudos via simulação de Monte Carlo foram desenvolvidos para avaliar o comportamento dos estimadores de máxima verossimilhança.Survival analysis emerges as a valuable statistical area for examining the time until the occurrence of events of interest. Several models were designed and applied in different areas such as: Medicine, Engineering, Biomedicine and Social Sciences. The model proposed by Cox (1972) stands out as one of the most recognized and used in the analysis of survival data. However, it is important to note that this model assumes that risks are proportional, an assumption that is not always reasonable. An alternative model to Cox proportional hazards models is the additive hazard model that was initially proposed by Aalen (1980). In the additive model, the effect of the covariates is inserted additively into the base hazard function. In many situations there are factors not observed in the study that influence survival time, so for univariate survival data a random effect, called Aalen (1978) and Clayton (1978) as a frailty term, can be entered additively or multiplicatively to estimate this unobserved heterogeneity. In this context, the additively inserted frailty term for risk modeling in univariate data analysis and recurring event data was studied and applied to real data. Furthermore, a proposal for an estimator for individual frailties was presented. Also a cure fraction model with additive frailty was proposed and applied to real data, where this model is applicable to studies in which there are individuals who are considered immune, cured or not susceptible to the event of interest. A new alternative additive risk modeling was also proposed based on Gupta (2016). The maximum likelihood estimation approach was used to estimate the parameters of the models studied, and studies via Monte Carlo simulation were developed to evaluate the behavior of maximum likelihood estimators.Biblioteca Digitais de Teses e Dissertações da USPTomazella, Vera Lucia DamascenoSilva, Felipe Rodrigues da2024-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-13052024-150236/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-05-13T18:08:07Zoai:teses.usp.br:tde-13052024-150236Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-05-13T18:08:07Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
New Additive Risk Modeling with Frailty for Survival Data Analysis
title Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
spellingShingle Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
Silva, Felipe Rodrigues da
Additive hazard model
Análise de sobrevivência
Cure fraction
Eventos recorrentes
Fração de cura
Fragilidade
Frailty
Modelo de risco aditivo
Recurrent events
Survival analysis
title_short Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
title_full Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
title_fullStr Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
title_full_unstemmed Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
title_sort Novas Modelagens de Risco Aditivo com Fragilidade para Análise de Dados de Sobrevivência
author Silva, Felipe Rodrigues da
author_facet Silva, Felipe Rodrigues da
author_role author
dc.contributor.none.fl_str_mv Tomazella, Vera Lucia Damasceno
dc.contributor.author.fl_str_mv Silva, Felipe Rodrigues da
dc.subject.por.fl_str_mv Additive hazard model
Análise de sobrevivência
Cure fraction
Eventos recorrentes
Fração de cura
Fragilidade
Frailty
Modelo de risco aditivo
Recurrent events
Survival analysis
topic Additive hazard model
Análise de sobrevivência
Cure fraction
Eventos recorrentes
Fração de cura
Fragilidade
Frailty
Modelo de risco aditivo
Recurrent events
Survival analysis
description A análise de sobrevivência emerge como uma valiosa área da estatística para examinar o tempo até a ocorrência de eventos de interesse. Diversos modelos foram concebidos e aplicados em diversas áreas tais como: Medicina, Engenharia, Biomedicina e Ciências Sociais. O modelo proposto por Cox (1972) destaca-se como um dos mais reconhecidos e empregados na análise de dados de sobrevivência. No entanto, é importante notar que esse modelo parte da suposição de que os riscos são proporcionais, uma premissa que nem sempre é justificável. Um modelo alternativo aos modelos de riscos proporcionais de Cox é o modelo de risco aditivo que inicialmente foi proposto por Aalen (1980). No modelo aditivo o efeito das covariáveis é inserido aditivamente à função de risco de base. Em muitas situações existem fatores não observados no estudo que influenciam o tempo de sobrevivência, dessa forma para dados de sobrevivência univariados um efeito aleatório, denominado por Aalen (1978) e Clayton (1978) como termo de fragilidade, pode ser inserido de forma aditiva ou multiplicativa para estimar essa heterogeneidade não observada. Neste contexto, o termo de fragilidade inserido aditivamente na modelagem de risco para análise de dados univariados e dados de eventos recorrentes foi estudado e aplicado a dados reais. Além disso, uma proposta de estimador para as fragilidades individuais foi apresentada. Também um modelo de fração de cura com fragilidade aditiva foi proposto e aplicado a dados reais, onde esse modelo é aplicável a estudos em que existem indivíduos que são considerados imunes, curados ou não suscetíveis ao evento de interesse. Uma nova modelagem de risco aditivo alternativa também foi proposta baseada em Gupta (2016). A abordagem de máxima verosimilhança foi utilizada para estimação dos parâmetros dos modelos estudados, e estudos via simulação de Monte Carlo foram desenvolvidos para avaliar o comportamento dos estimadores de máxima verossimilhança.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-13052024-150236/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-13052024-150236/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256935063093248