Análise de componentes principais em data warehouses

Detalhes bibliográficos
Autor(a) principal: Rossi, Rafael Germano
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07012018-182730/
Resumo: A técnica de Análise de Componentes Principais (PCA) tem como objetivo principal a descrição da variância e covariância entre um conjunto de variáveis. Essa técnica é utilizada para mitigar redundâncias no conjunto de variáveis e para redução de dimensionalidade em várias aplicações nas áreas científica, tecnológica e administrativa. Por outro lado, o modelo de dados multidimensionais é composto por relações de fato e dimensões (tabelas) que descrevem um evento usando métricas e a relação entre suas dimensões. No entanto, o volume de dados armazenados e a complexidade de suas dimensões geralmente envolvidas neste modelo, especialmente no ambiente de data warehouse, tornam a tarefa de interpretar a correlação entre dimensões muito difícil e às vezes impraticável. Neste trabalho, propomos o desenvolvimento de uma Interface de Programação de Aplicação (API) para a aplicação da PCA no modelo de dados multidimensionais para facilitar a tarefa de caracterização e redução de dimensionalidade, integrando essa técnica com ambientes de Data Warehouses. Para verificar a eficácia desta API, um estudo de caso foi realizado utilizando dados de produção científica e suas citações obtidas das Plataformas Lattes, Web of Science, Google Scholar e Scopus, fornecidas pela Superintendência de Tecnologia da Informação da Universidade de São Paulo.
id USP_a88f3b4eacb950af9f9caf71531bdeea
oai_identifier_str oai:teses.usp.br:tde-07012018-182730
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise de componentes principais em data warehousesPrincipal components analysis in data warehousesAnálise bibliométricaBibliometric analysisData warehouseData warehouseModelo multidimensionalMultidimensional modelPCAPCAA técnica de Análise de Componentes Principais (PCA) tem como objetivo principal a descrição da variância e covariância entre um conjunto de variáveis. Essa técnica é utilizada para mitigar redundâncias no conjunto de variáveis e para redução de dimensionalidade em várias aplicações nas áreas científica, tecnológica e administrativa. Por outro lado, o modelo de dados multidimensionais é composto por relações de fato e dimensões (tabelas) que descrevem um evento usando métricas e a relação entre suas dimensões. No entanto, o volume de dados armazenados e a complexidade de suas dimensões geralmente envolvidas neste modelo, especialmente no ambiente de data warehouse, tornam a tarefa de interpretar a correlação entre dimensões muito difícil e às vezes impraticável. Neste trabalho, propomos o desenvolvimento de uma Interface de Programação de Aplicação (API) para a aplicação da PCA no modelo de dados multidimensionais para facilitar a tarefa de caracterização e redução de dimensionalidade, integrando essa técnica com ambientes de Data Warehouses. Para verificar a eficácia desta API, um estudo de caso foi realizado utilizando dados de produção científica e suas citações obtidas das Plataformas Lattes, Web of Science, Google Scholar e Scopus, fornecidas pela Superintendência de Tecnologia da Informação da Universidade de São Paulo.The Principal Component Analysis (PCA) technique has as the main goal the description of the variance and covariance between a set of variables. This technique is used to mitigate redundancies in the set of variables and as a mean of achieving dimensional reduction in various applications in the scientific, technological and administrative areas. On the other hand, the multidimensional data model is composed by fact and dimension relations (tables) that describe an event using metrics and the relationship between their dimensions. However, the volume of data stored and the complexity of their dimensions usually involved in this model, specially in data warehouse environment, makes the correlation analyses between dimensions very difficult and sometimes impracticable. In this work, we propose the development of an Application Programming Interface (API) for the application of PCA on multidimensional data model in order to facilitate the characterization task and dimension reduction, integrating the technique with Data Warehouses environments. For verifying the effectiveness of this API, a case study was carried out using the scientific production data obtained from the Lattes Platform, the Web of Science, Google Scholar and Scopus, provided by the IT Superintendence at University of São Paulo.Biblioteca Digitais de Teses e Dissertações da USPFerreira, João EduardoRossi, Rafael Germano2017-11-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-07012018-182730/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-07012018-182730Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise de componentes principais em data warehouses
Principal components analysis in data warehouses
title Análise de componentes principais em data warehouses
spellingShingle Análise de componentes principais em data warehouses
Rossi, Rafael Germano
Análise bibliométrica
Bibliometric analysis
Data warehouse
Data warehouse
Modelo multidimensional
Multidimensional model
PCA
PCA
title_short Análise de componentes principais em data warehouses
title_full Análise de componentes principais em data warehouses
title_fullStr Análise de componentes principais em data warehouses
title_full_unstemmed Análise de componentes principais em data warehouses
title_sort Análise de componentes principais em data warehouses
author Rossi, Rafael Germano
author_facet Rossi, Rafael Germano
author_role author
dc.contributor.none.fl_str_mv Ferreira, João Eduardo
dc.contributor.author.fl_str_mv Rossi, Rafael Germano
dc.subject.por.fl_str_mv Análise bibliométrica
Bibliometric analysis
Data warehouse
Data warehouse
Modelo multidimensional
Multidimensional model
PCA
PCA
topic Análise bibliométrica
Bibliometric analysis
Data warehouse
Data warehouse
Modelo multidimensional
Multidimensional model
PCA
PCA
description A técnica de Análise de Componentes Principais (PCA) tem como objetivo principal a descrição da variância e covariância entre um conjunto de variáveis. Essa técnica é utilizada para mitigar redundâncias no conjunto de variáveis e para redução de dimensionalidade em várias aplicações nas áreas científica, tecnológica e administrativa. Por outro lado, o modelo de dados multidimensionais é composto por relações de fato e dimensões (tabelas) que descrevem um evento usando métricas e a relação entre suas dimensões. No entanto, o volume de dados armazenados e a complexidade de suas dimensões geralmente envolvidas neste modelo, especialmente no ambiente de data warehouse, tornam a tarefa de interpretar a correlação entre dimensões muito difícil e às vezes impraticável. Neste trabalho, propomos o desenvolvimento de uma Interface de Programação de Aplicação (API) para a aplicação da PCA no modelo de dados multidimensionais para facilitar a tarefa de caracterização e redução de dimensionalidade, integrando essa técnica com ambientes de Data Warehouses. Para verificar a eficácia desta API, um estudo de caso foi realizado utilizando dados de produção científica e suas citações obtidas das Plataformas Lattes, Web of Science, Google Scholar e Scopus, fornecidas pela Superintendência de Tecnologia da Informação da Universidade de São Paulo.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07012018-182730/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07012018-182730/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256737561706496