An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Kandice Suane Barros
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/
Resumo: In metal additive manufacturing, the complex thermal activity of newly deposited layers and its influence in previously deposited material affects the part\'s shape and quality. With this regard, the aim of this research is to develop a methodology for monitoring laser power, feed speed and melt pool to evaluate effective material joining and maintenance of good deposited layers on the build of metal parts. This novel methodology combines the data acquisition from a L-DED hybrid machine with a cladding head with 2 mm laser spot size in focus. To aid the monitoring method, some software were developed (DTConnect, MPImageGrabber, MPImageProcessor, DTMap2D and DTMap3D) and tested in four geometries: zigzag line and thin wall (2D); a pyramid, and a pyramid mould (3D). The 3D geometries were printed at four different laser configurations (500 W, 550 – 450 W, 700 W and 800 – 700 W), at the constant feed speed of 600 mm/min, and mass flow rate of 8.3 g/min, under the scanning strategies of contour and zigzag. These parameters were defined to promote one set that presents major defects and other with uniform microstructure. The pyramid built with 550 – 450 W in zigzag strategy has presented the higher percentage of porosity, estimated in 2.76%, whilst the set of 500 W produced the lowest (1.36%). Overall, the 3D builds printed with 500 W have presented defects such as lack of fusion, poor dilution, and porosity. The percentage of porosity has decreased considerably (> 5 times) with the increase of laser power to 700 W and 800 – 700 W, which significantly enhanced the quality and homogeneity in both geometries, highly mitigating the defects aforementioned. Each one of the software designed plays an important role from data acquiring and processing, to its graphic representation. Regarding all conditions tested, both DTMap2D and DTMap3D were able to display the process variables of interest in an interactive color map, therefore making human spatially identification of minor changes in the dataset easier. This makes the DTMap3D a potential tool to speed up the identification of critical regions for post-build inspection. This study contributes towards further knowledge in metal additive manufacturing by bringing to the field a monitoring methodology with new monitoring tools, which easy the correlation between printing parameters and the as-built metal workpiece quality.
id USP_a8eb4557d1d41b6fe5aea1d2602fc3b3
oai_identifier_str oai:teses.usp.br:tde-11042023-145516
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) processUm método inovativo de monitoramento utilizando um software capaz de gerar mapa 3D com dados do processo de Deposição por Energia Direcionada a laser (L-DED)additive manufacturingdata processingdesenvolvimento de softwaremanufatura aditivamonitoramentomonitoringprocessamento de dadossoftware developmentIn metal additive manufacturing, the complex thermal activity of newly deposited layers and its influence in previously deposited material affects the part\'s shape and quality. With this regard, the aim of this research is to develop a methodology for monitoring laser power, feed speed and melt pool to evaluate effective material joining and maintenance of good deposited layers on the build of metal parts. This novel methodology combines the data acquisition from a L-DED hybrid machine with a cladding head with 2 mm laser spot size in focus. To aid the monitoring method, some software were developed (DTConnect, MPImageGrabber, MPImageProcessor, DTMap2D and DTMap3D) and tested in four geometries: zigzag line and thin wall (2D); a pyramid, and a pyramid mould (3D). The 3D geometries were printed at four different laser configurations (500 W, 550 – 450 W, 700 W and 800 – 700 W), at the constant feed speed of 600 mm/min, and mass flow rate of 8.3 g/min, under the scanning strategies of contour and zigzag. These parameters were defined to promote one set that presents major defects and other with uniform microstructure. The pyramid built with 550 – 450 W in zigzag strategy has presented the higher percentage of porosity, estimated in 2.76%, whilst the set of 500 W produced the lowest (1.36%). Overall, the 3D builds printed with 500 W have presented defects such as lack of fusion, poor dilution, and porosity. The percentage of porosity has decreased considerably (> 5 times) with the increase of laser power to 700 W and 800 – 700 W, which significantly enhanced the quality and homogeneity in both geometries, highly mitigating the defects aforementioned. Each one of the software designed plays an important role from data acquiring and processing, to its graphic representation. Regarding all conditions tested, both DTMap2D and DTMap3D were able to display the process variables of interest in an interactive color map, therefore making human spatially identification of minor changes in the dataset easier. This makes the DTMap3D a potential tool to speed up the identification of critical regions for post-build inspection. This study contributes towards further knowledge in metal additive manufacturing by bringing to the field a monitoring methodology with new monitoring tools, which easy the correlation between printing parameters and the as-built metal workpiece quality.Na manufatura aditiva de metais, a atividade térmica nas camadas recém-depositadas durante a impressão, e sua influência no material previamente depositado, afetam a geometria e qualidade da peça. Assim, o objetivo desta pesquisa é desenvolver uma metodologia para monitorar a potência do laser, a velocidade de avanço e a poça de fusão para avaliar a deposição de camadas com boa qualidade na impressão de peças metálicas. Esta nova metodologia combina a aquisição de dados de uma máquina híbrida de L-DED com um cabeçote de deposição e diâmetro do feixe de laser de 2 mm no ponto focal. Para o monitoramento, alguns softwares foram desenvolvidos (DTConnect, MPIG, MPIP, DTMap2D e DTMap3D) e testados em quatro geometrias: linha em ziguezague e parede fina (2D); uma pirâmide e um molde de pirâmide (3D). As geometrias 3D foram impressas em quatro configurações de laser (500 W, 550 – 450 W, 700 W e 800 – 700 W), velocidade de avanço constante em 600 mm/min e taxa de alimentação de pó de 8, 3 g/min, nas estratégias de deposição contorno e ziguezague. Esses parâmetros foram definidos visando promover um conjunto que apresenta defeitos e outro com microestrutura uniforme. A pirâmide construída com 550 – 450 W em estratégia de ziguezague apresentou o maior percentual de porosidade, estimado em 2, 76%, enquanto o conjunto impresso com 500 W produziu o menor (1,36%). No geral, as geometrias 3D impressas com 500 W apresentaram defeitos como falta de fusão, má diluição no substrato e porosidade. A percentagem de porosidade diminuiu consideravelmente (> 5 vezes) com o aumento da potência do laser para 700 W e 800 – 700 W, o que melhorou a qualidade e homogeneidade em ambas as geometrias, mitigando os defeitos mencionados. Cada um dos softwares desenvolvidos desempenhou um papel importante desde a aquisição e processamento dos dados, até a sua representação gráfica. Considerando todas as condições testadas, ambos DTMap2D e DTMap3D foram capazes de exibir as variáveis do processo de DED em um mapa de cores interativo, facilitando a identificação espacial de pequenas alterações nos conjuntos de dados. Essas características tornam o DTMap3D uma ferramenta com potencial para identificar regiões críticas da peça. Este estudo contribui para a manufatura aditiva de metais ao propor uma metodologia de monitoramento com novas ferramentas, que facilitam a correlação entre os parâmetros de deposição e a qualidade da peça de metal construída.Biblioteca Digitais de Teses e Dissertações da USPCoelho, Reginaldo TeixeiraRibeiro, Kandice Suane Barros2023-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-13T13:04:17Zoai:teses.usp.br:tde-11042023-145516Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-13T13:04:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
Um método inovativo de monitoramento utilizando um software capaz de gerar mapa 3D com dados do processo de Deposição por Energia Direcionada a laser (L-DED)
title An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
spellingShingle An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
Ribeiro, Kandice Suane Barros
additive manufacturing
data processing
desenvolvimento de software
manufatura aditiva
monitoramento
monitoring
processamento de dados
software development
title_short An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
title_full An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
title_fullStr An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
title_full_unstemmed An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
title_sort An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
author Ribeiro, Kandice Suane Barros
author_facet Ribeiro, Kandice Suane Barros
author_role author
dc.contributor.none.fl_str_mv Coelho, Reginaldo Teixeira
dc.contributor.author.fl_str_mv Ribeiro, Kandice Suane Barros
dc.subject.por.fl_str_mv additive manufacturing
data processing
desenvolvimento de software
manufatura aditiva
monitoramento
monitoring
processamento de dados
software development
topic additive manufacturing
data processing
desenvolvimento de software
manufatura aditiva
monitoramento
monitoring
processamento de dados
software development
description In metal additive manufacturing, the complex thermal activity of newly deposited layers and its influence in previously deposited material affects the part\'s shape and quality. With this regard, the aim of this research is to develop a methodology for monitoring laser power, feed speed and melt pool to evaluate effective material joining and maintenance of good deposited layers on the build of metal parts. This novel methodology combines the data acquisition from a L-DED hybrid machine with a cladding head with 2 mm laser spot size in focus. To aid the monitoring method, some software were developed (DTConnect, MPImageGrabber, MPImageProcessor, DTMap2D and DTMap3D) and tested in four geometries: zigzag line and thin wall (2D); a pyramid, and a pyramid mould (3D). The 3D geometries were printed at four different laser configurations (500 W, 550 – 450 W, 700 W and 800 – 700 W), at the constant feed speed of 600 mm/min, and mass flow rate of 8.3 g/min, under the scanning strategies of contour and zigzag. These parameters were defined to promote one set that presents major defects and other with uniform microstructure. The pyramid built with 550 – 450 W in zigzag strategy has presented the higher percentage of porosity, estimated in 2.76%, whilst the set of 500 W produced the lowest (1.36%). Overall, the 3D builds printed with 500 W have presented defects such as lack of fusion, poor dilution, and porosity. The percentage of porosity has decreased considerably (> 5 times) with the increase of laser power to 700 W and 800 – 700 W, which significantly enhanced the quality and homogeneity in both geometries, highly mitigating the defects aforementioned. Each one of the software designed plays an important role from data acquiring and processing, to its graphic representation. Regarding all conditions tested, both DTMap2D and DTMap3D were able to display the process variables of interest in an interactive color map, therefore making human spatially identification of minor changes in the dataset easier. This makes the DTMap3D a potential tool to speed up the identification of critical regions for post-build inspection. This study contributes towards further knowledge in metal additive manufacturing by bringing to the field a monitoring methodology with new monitoring tools, which easy the correlation between printing parameters and the as-built metal workpiece quality.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/
url https://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090612335476736