An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/ |
Resumo: | In metal additive manufacturing, the complex thermal activity of newly deposited layers and its influence in previously deposited material affects the part\'s shape and quality. With this regard, the aim of this research is to develop a methodology for monitoring laser power, feed speed and melt pool to evaluate effective material joining and maintenance of good deposited layers on the build of metal parts. This novel methodology combines the data acquisition from a L-DED hybrid machine with a cladding head with 2 mm laser spot size in focus. To aid the monitoring method, some software were developed (DTConnect, MPImageGrabber, MPImageProcessor, DTMap2D and DTMap3D) and tested in four geometries: zigzag line and thin wall (2D); a pyramid, and a pyramid mould (3D). The 3D geometries were printed at four different laser configurations (500 W, 550 – 450 W, 700 W and 800 – 700 W), at the constant feed speed of 600 mm/min, and mass flow rate of 8.3 g/min, under the scanning strategies of contour and zigzag. These parameters were defined to promote one set that presents major defects and other with uniform microstructure. The pyramid built with 550 – 450 W in zigzag strategy has presented the higher percentage of porosity, estimated in 2.76%, whilst the set of 500 W produced the lowest (1.36%). Overall, the 3D builds printed with 500 W have presented defects such as lack of fusion, poor dilution, and porosity. The percentage of porosity has decreased considerably (> 5 times) with the increase of laser power to 700 W and 800 – 700 W, which significantly enhanced the quality and homogeneity in both geometries, highly mitigating the defects aforementioned. Each one of the software designed plays an important role from data acquiring and processing, to its graphic representation. Regarding all conditions tested, both DTMap2D and DTMap3D were able to display the process variables of interest in an interactive color map, therefore making human spatially identification of minor changes in the dataset easier. This makes the DTMap3D a potential tool to speed up the identification of critical regions for post-build inspection. This study contributes towards further knowledge in metal additive manufacturing by bringing to the field a monitoring methodology with new monitoring tools, which easy the correlation between printing parameters and the as-built metal workpiece quality. |
id |
USP_a8eb4557d1d41b6fe5aea1d2602fc3b3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-11042023-145516 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) processUm método inovativo de monitoramento utilizando um software capaz de gerar mapa 3D com dados do processo de Deposição por Energia Direcionada a laser (L-DED)additive manufacturingdata processingdesenvolvimento de softwaremanufatura aditivamonitoramentomonitoringprocessamento de dadossoftware developmentIn metal additive manufacturing, the complex thermal activity of newly deposited layers and its influence in previously deposited material affects the part\'s shape and quality. With this regard, the aim of this research is to develop a methodology for monitoring laser power, feed speed and melt pool to evaluate effective material joining and maintenance of good deposited layers on the build of metal parts. This novel methodology combines the data acquisition from a L-DED hybrid machine with a cladding head with 2 mm laser spot size in focus. To aid the monitoring method, some software were developed (DTConnect, MPImageGrabber, MPImageProcessor, DTMap2D and DTMap3D) and tested in four geometries: zigzag line and thin wall (2D); a pyramid, and a pyramid mould (3D). The 3D geometries were printed at four different laser configurations (500 W, 550 – 450 W, 700 W and 800 – 700 W), at the constant feed speed of 600 mm/min, and mass flow rate of 8.3 g/min, under the scanning strategies of contour and zigzag. These parameters were defined to promote one set that presents major defects and other with uniform microstructure. The pyramid built with 550 – 450 W in zigzag strategy has presented the higher percentage of porosity, estimated in 2.76%, whilst the set of 500 W produced the lowest (1.36%). Overall, the 3D builds printed with 500 W have presented defects such as lack of fusion, poor dilution, and porosity. The percentage of porosity has decreased considerably (> 5 times) with the increase of laser power to 700 W and 800 – 700 W, which significantly enhanced the quality and homogeneity in both geometries, highly mitigating the defects aforementioned. Each one of the software designed plays an important role from data acquiring and processing, to its graphic representation. Regarding all conditions tested, both DTMap2D and DTMap3D were able to display the process variables of interest in an interactive color map, therefore making human spatially identification of minor changes in the dataset easier. This makes the DTMap3D a potential tool to speed up the identification of critical regions for post-build inspection. This study contributes towards further knowledge in metal additive manufacturing by bringing to the field a monitoring methodology with new monitoring tools, which easy the correlation between printing parameters and the as-built metal workpiece quality.Na manufatura aditiva de metais, a atividade térmica nas camadas recém-depositadas durante a impressão, e sua influência no material previamente depositado, afetam a geometria e qualidade da peça. Assim, o objetivo desta pesquisa é desenvolver uma metodologia para monitorar a potência do laser, a velocidade de avanço e a poça de fusão para avaliar a deposição de camadas com boa qualidade na impressão de peças metálicas. Esta nova metodologia combina a aquisição de dados de uma máquina híbrida de L-DED com um cabeçote de deposição e diâmetro do feixe de laser de 2 mm no ponto focal. Para o monitoramento, alguns softwares foram desenvolvidos (DTConnect, MPIG, MPIP, DTMap2D e DTMap3D) e testados em quatro geometrias: linha em ziguezague e parede fina (2D); uma pirâmide e um molde de pirâmide (3D). As geometrias 3D foram impressas em quatro configurações de laser (500 W, 550 – 450 W, 700 W e 800 – 700 W), velocidade de avanço constante em 600 mm/min e taxa de alimentação de pó de 8, 3 g/min, nas estratégias de deposição contorno e ziguezague. Esses parâmetros foram definidos visando promover um conjunto que apresenta defeitos e outro com microestrutura uniforme. A pirâmide construída com 550 – 450 W em estratégia de ziguezague apresentou o maior percentual de porosidade, estimado em 2, 76%, enquanto o conjunto impresso com 500 W produziu o menor (1,36%). No geral, as geometrias 3D impressas com 500 W apresentaram defeitos como falta de fusão, má diluição no substrato e porosidade. A percentagem de porosidade diminuiu consideravelmente (> 5 vezes) com o aumento da potência do laser para 700 W e 800 – 700 W, o que melhorou a qualidade e homogeneidade em ambas as geometrias, mitigando os defeitos mencionados. Cada um dos softwares desenvolvidos desempenhou um papel importante desde a aquisição e processamento dos dados, até a sua representação gráfica. Considerando todas as condições testadas, ambos DTMap2D e DTMap3D foram capazes de exibir as variáveis do processo de DED em um mapa de cores interativo, facilitando a identificação espacial de pequenas alterações nos conjuntos de dados. Essas características tornam o DTMap3D uma ferramenta com potencial para identificar regiões críticas da peça. Este estudo contribui para a manufatura aditiva de metais ao propor uma metodologia de monitoramento com novas ferramentas, que facilitam a correlação entre os parâmetros de deposição e a qualidade da peça de metal construída.Biblioteca Digitais de Teses e Dissertações da USPCoelho, Reginaldo TeixeiraRibeiro, Kandice Suane Barros2023-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-13T13:04:17Zoai:teses.usp.br:tde-11042023-145516Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-13T13:04:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process Um método inovativo de monitoramento utilizando um software capaz de gerar mapa 3D com dados do processo de Deposição por Energia Direcionada a laser (L-DED) |
title |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process |
spellingShingle |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process Ribeiro, Kandice Suane Barros additive manufacturing data processing desenvolvimento de software manufatura aditiva monitoramento monitoring processamento de dados software development |
title_short |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process |
title_full |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process |
title_fullStr |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process |
title_full_unstemmed |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process |
title_sort |
An innovative monitoring method using a software capable of 3D mapping data from laser Directed Energy Deposition (L-DED) process |
author |
Ribeiro, Kandice Suane Barros |
author_facet |
Ribeiro, Kandice Suane Barros |
author_role |
author |
dc.contributor.none.fl_str_mv |
Coelho, Reginaldo Teixeira |
dc.contributor.author.fl_str_mv |
Ribeiro, Kandice Suane Barros |
dc.subject.por.fl_str_mv |
additive manufacturing data processing desenvolvimento de software manufatura aditiva monitoramento monitoring processamento de dados software development |
topic |
additive manufacturing data processing desenvolvimento de software manufatura aditiva monitoramento monitoring processamento de dados software development |
description |
In metal additive manufacturing, the complex thermal activity of newly deposited layers and its influence in previously deposited material affects the part\'s shape and quality. With this regard, the aim of this research is to develop a methodology for monitoring laser power, feed speed and melt pool to evaluate effective material joining and maintenance of good deposited layers on the build of metal parts. This novel methodology combines the data acquisition from a L-DED hybrid machine with a cladding head with 2 mm laser spot size in focus. To aid the monitoring method, some software were developed (DTConnect, MPImageGrabber, MPImageProcessor, DTMap2D and DTMap3D) and tested in four geometries: zigzag line and thin wall (2D); a pyramid, and a pyramid mould (3D). The 3D geometries were printed at four different laser configurations (500 W, 550 – 450 W, 700 W and 800 – 700 W), at the constant feed speed of 600 mm/min, and mass flow rate of 8.3 g/min, under the scanning strategies of contour and zigzag. These parameters were defined to promote one set that presents major defects and other with uniform microstructure. The pyramid built with 550 – 450 W in zigzag strategy has presented the higher percentage of porosity, estimated in 2.76%, whilst the set of 500 W produced the lowest (1.36%). Overall, the 3D builds printed with 500 W have presented defects such as lack of fusion, poor dilution, and porosity. The percentage of porosity has decreased considerably (> 5 times) with the increase of laser power to 700 W and 800 – 700 W, which significantly enhanced the quality and homogeneity in both geometries, highly mitigating the defects aforementioned. Each one of the software designed plays an important role from data acquiring and processing, to its graphic representation. Regarding all conditions tested, both DTMap2D and DTMap3D were able to display the process variables of interest in an interactive color map, therefore making human spatially identification of minor changes in the dataset easier. This makes the DTMap3D a potential tool to speed up the identification of critical regions for post-build inspection. This study contributes towards further knowledge in metal additive manufacturing by bringing to the field a monitoring methodology with new monitoring tools, which easy the correlation between printing parameters and the as-built metal workpiece quality. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/ |
url |
https://www.teses.usp.br/teses/disponiveis/18/18163/tde-11042023-145516/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256859744927744 |