Integração da otimização em tempo real com controle preditivo.

Detalhes bibliográficos
Autor(a) principal: Souza, Glauce Freitas de
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3137/tde-27072007-182632/
Resumo: Este trabalho tem como objetivo principal o desenvolvimento de uma estratégia de integração da otimização com o controle preditivo multivariável em uma camada. Os problemas de controle e otimização econômica são resolvidos simultaneamente em um mesmo algoritmo. A função objetivo econômica foi inserida no controlador na sua forma diferencial, ou seja, o gradiente da função objetivo econômica. O método foi testado por simulação para o caso do sistema reator regenerador da UFCC (Unit of Fluid Catalytic Cracker). Esta dissertação descreve a estratégia de otimização integrada ao controlador preditivo cuja função objetivo incorpora componentes dinâmicos e estáticos. Para a determinação das condições ótimas do processo no estado estacionário do conversor (unidade de craqueamento catalítico) foi utilizado um modelo empírico do processo. A melhor trajetória para conduzir o processo para o seu ponto ótimo de operação, maximizando lucro ou produto de maior valor agregado, desde que não sejam violadas as restrições de processo, é predita utilizando um modelo dinâmico, obtido através de dados de testes em degrau em um modelo rigoroso. Este modelo linear possibilitou a obtenção das funções de transferência do processo e o modelo em variáveis de estado. O ponto ótimo que é obtido na execução deste algoritmo, leva em consideração a não violação das restrições das variáveis manipuladas e controladas do processo, tanto para o estado estacionário como para o transiente do problema. O problema de otimização não linear resultante é resolvido através de uma rotina de programação quadrática da biblioteca do Matlab. Uma segunda alternativa apresentada para a estratégia de otimização deste trabalho, é a inclusão do gradiente reduzido na função objetivo do controlador quando são observadas violações das restrições das variáveis controladas. Os resultados simulados através de um modelo não linear rigoroso (Moro&Odloak,1995) mostram um bom desempenho dos algoritmos aqui desenvolvidos tanto com relação aos benefícios econômicos como na estabilização da unidade.
id USP_abbdbf7fc1ec8c7c338f542c000f2eb6
oai_identifier_str oai:teses.usp.br:tde-27072007-182632
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Integração da otimização em tempo real com controle preditivo.Integration of the optimization on-line with model predictive control.Chemical engineeringControle de processosControle preditivoEngenharia químicaFCCModel predictive controlNon linear optimizationNon linear programmingOtimização não-linearProcess controlProgramação não-linearUnidade de craqueamento catalíticoEste trabalho tem como objetivo principal o desenvolvimento de uma estratégia de integração da otimização com o controle preditivo multivariável em uma camada. Os problemas de controle e otimização econômica são resolvidos simultaneamente em um mesmo algoritmo. A função objetivo econômica foi inserida no controlador na sua forma diferencial, ou seja, o gradiente da função objetivo econômica. O método foi testado por simulação para o caso do sistema reator regenerador da UFCC (Unit of Fluid Catalytic Cracker). Esta dissertação descreve a estratégia de otimização integrada ao controlador preditivo cuja função objetivo incorpora componentes dinâmicos e estáticos. Para a determinação das condições ótimas do processo no estado estacionário do conversor (unidade de craqueamento catalítico) foi utilizado um modelo empírico do processo. A melhor trajetória para conduzir o processo para o seu ponto ótimo de operação, maximizando lucro ou produto de maior valor agregado, desde que não sejam violadas as restrições de processo, é predita utilizando um modelo dinâmico, obtido através de dados de testes em degrau em um modelo rigoroso. Este modelo linear possibilitou a obtenção das funções de transferência do processo e o modelo em variáveis de estado. O ponto ótimo que é obtido na execução deste algoritmo, leva em consideração a não violação das restrições das variáveis manipuladas e controladas do processo, tanto para o estado estacionário como para o transiente do problema. O problema de otimização não linear resultante é resolvido através de uma rotina de programação quadrática da biblioteca do Matlab. Uma segunda alternativa apresentada para a estratégia de otimização deste trabalho, é a inclusão do gradiente reduzido na função objetivo do controlador quando são observadas violações das restrições das variáveis controladas. Os resultados simulados através de um modelo não linear rigoroso (Moro&Odloak,1995) mostram um bom desempenho dos algoritmos aqui desenvolvidos tanto com relação aos benefícios econômicos como na estabilização da unidade.This dissertation aims to develop a strategy to integrate the optimization problem of the plant into the model predictive controller in a one layer strategy, for the real time optimization or online optimization. The control and the optimization of the process are computed simultaneously in the same algorithm. The gradient of the economic objective function is included in the cost function of the controller instead of in its regular form. Thereby, this work describes a predictive control strategy, which can be classified as a one layer strategy and whose objective function has to be optimized obeying constraints, which incorporates dynamic and static components. The optimal conditions of the process in the steady state are defined through the use of an empirical process model. Furthermore, the best trajectory to be followed in order to reach the optimal conditions, without violating the constraints, maximizing profit or the production of its more valuable product, is predicted through the use of the dynamic model, that can be obtained through a plant step test. As a result transfer function and state space models are obtained. The optimal operation point is achieved through the execution of the proposed algorithm. Therefore, the solution to the optimization/control problem will always be in a feasible region, in other words, without violating the process manipulated or controlled variable constraints for both stationary and transient states of the problem. The non-linear optimization problem resulted from the implementation of the proposed algorithm is solved through the quadratic programming routine from the Matlab library. The second online optimization strategy proposed in this work is one that considers the reduced gradient method algorithm modified to evaluate the predicted trajectory. As a result, any violation of the manipulated or controlled variable constraints is prevented and this variable is not considered in the next step of the calculation of the predicted trajectory or even in the search direction of the optimization. Finally the simulations results obtained through the use of a nonlinear rigorous model (Moro&Odloak,1995) presents good performance for the algorithms here proposed, not only related to economic benefits, but also in order to stabilize the unit.Biblioteca Digitais de Teses e Dissertações da USPOdloak, DarciSouza, Glauce Freitas de2007-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3137/tde-27072007-182632/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:54Zoai:teses.usp.br:tde-27072007-182632Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Integração da otimização em tempo real com controle preditivo.
Integration of the optimization on-line with model predictive control.
title Integração da otimização em tempo real com controle preditivo.
spellingShingle Integração da otimização em tempo real com controle preditivo.
Souza, Glauce Freitas de
Chemical engineering
Controle de processos
Controle preditivo
Engenharia química
FCC
Model predictive control
Non linear optimization
Non linear programming
Otimização não-linear
Process control
Programação não-linear
Unidade de craqueamento catalítico
title_short Integração da otimização em tempo real com controle preditivo.
title_full Integração da otimização em tempo real com controle preditivo.
title_fullStr Integração da otimização em tempo real com controle preditivo.
title_full_unstemmed Integração da otimização em tempo real com controle preditivo.
title_sort Integração da otimização em tempo real com controle preditivo.
author Souza, Glauce Freitas de
author_facet Souza, Glauce Freitas de
author_role author
dc.contributor.none.fl_str_mv Odloak, Darci
dc.contributor.author.fl_str_mv Souza, Glauce Freitas de
dc.subject.por.fl_str_mv Chemical engineering
Controle de processos
Controle preditivo
Engenharia química
FCC
Model predictive control
Non linear optimization
Non linear programming
Otimização não-linear
Process control
Programação não-linear
Unidade de craqueamento catalítico
topic Chemical engineering
Controle de processos
Controle preditivo
Engenharia química
FCC
Model predictive control
Non linear optimization
Non linear programming
Otimização não-linear
Process control
Programação não-linear
Unidade de craqueamento catalítico
description Este trabalho tem como objetivo principal o desenvolvimento de uma estratégia de integração da otimização com o controle preditivo multivariável em uma camada. Os problemas de controle e otimização econômica são resolvidos simultaneamente em um mesmo algoritmo. A função objetivo econômica foi inserida no controlador na sua forma diferencial, ou seja, o gradiente da função objetivo econômica. O método foi testado por simulação para o caso do sistema reator regenerador da UFCC (Unit of Fluid Catalytic Cracker). Esta dissertação descreve a estratégia de otimização integrada ao controlador preditivo cuja função objetivo incorpora componentes dinâmicos e estáticos. Para a determinação das condições ótimas do processo no estado estacionário do conversor (unidade de craqueamento catalítico) foi utilizado um modelo empírico do processo. A melhor trajetória para conduzir o processo para o seu ponto ótimo de operação, maximizando lucro ou produto de maior valor agregado, desde que não sejam violadas as restrições de processo, é predita utilizando um modelo dinâmico, obtido através de dados de testes em degrau em um modelo rigoroso. Este modelo linear possibilitou a obtenção das funções de transferência do processo e o modelo em variáveis de estado. O ponto ótimo que é obtido na execução deste algoritmo, leva em consideração a não violação das restrições das variáveis manipuladas e controladas do processo, tanto para o estado estacionário como para o transiente do problema. O problema de otimização não linear resultante é resolvido através de uma rotina de programação quadrática da biblioteca do Matlab. Uma segunda alternativa apresentada para a estratégia de otimização deste trabalho, é a inclusão do gradiente reduzido na função objetivo do controlador quando são observadas violações das restrições das variáveis controladas. Os resultados simulados através de um modelo não linear rigoroso (Moro&Odloak,1995) mostram um bom desempenho dos algoritmos aqui desenvolvidos tanto com relação aos benefícios econômicos como na estabilização da unidade.
publishDate 2007
dc.date.none.fl_str_mv 2007-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3137/tde-27072007-182632/
url http://www.teses.usp.br/teses/disponiveis/3/3137/tde-27072007-182632/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257413204312064