Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.

Detalhes bibliográficos
Autor(a) principal: Lima, Fábio
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3143/tde-20092011-150232/
Resumo: Este trabalho apresenta uma alternativa ao controle vetorial de motores de indução, sem a utilização de sensores para realimentação da velocidade mecânica do motor. Ao longo do tempo, diversas técnicas de controle vetorial têm sido propostas na literatura. Dentre elas está a técnica de controle por orientação de campo (FOC), muito utilizada na indústria e presente também neste trabalho. A principal desvantagem do FOC é a sua grande sensibilidade às variações paramétricas da máquina, as quais podem invalidar o modelo e as ações de controle. Nesse sentido, uma estimativa correta dos parâmetros da máquina, torna-se fundamental para o acionamento. Este trabalho propõe o desenvolvimento e implementação de um estimador baseado em um sistema de inferência neuro-fuzzy adaptativo (ANFIS) para o controle de velocidade do motor de indução trifásico em um acionamento sem sensores. Pelo fato do acionamento em malha fechada admitir diversas velocidades de regime estacionário para o motor, uma nova metodologia de treinamento por partição de frequência é proposta. Ainda, faz-se a validação do sistema utilizando a orientação de campo magnético no referencial de campo de entreferro da máquina. Simulações para avaliação do desempenho do estimador mediante o acionamento vetorial do motor foram realizadas utilizando o programa Matlab/Simulink. Para a validação prática do modelo, uma bancada de testes foi implementada; o acionamento do motor foi realizado por um inversor de frequência do tipo fonte de tensão (VSI) e o controle vetorial, incluindo o estimador neuro-fuzzy, foi realizado pelo pacote de tempo real do programa Matlab/Simulink, juntamente com uma placa de aquisição de dados da National Instruments.
id USP_ad3d411b8d4b191c69cd27ccec339c82
oai_identifier_str oai:teses.usp.br:tde-20092011-150232
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.Neuro-fuzzy speed estimator applied to sensorless induction motor drives.Acionamento sem sensoresANFISANFISArtificial neural networksFuzzy logicInduction motorsLógica FuzzyMotor de induçãoRedes neurais artificiaisSensorless drivesEste trabalho apresenta uma alternativa ao controle vetorial de motores de indução, sem a utilização de sensores para realimentação da velocidade mecânica do motor. Ao longo do tempo, diversas técnicas de controle vetorial têm sido propostas na literatura. Dentre elas está a técnica de controle por orientação de campo (FOC), muito utilizada na indústria e presente também neste trabalho. A principal desvantagem do FOC é a sua grande sensibilidade às variações paramétricas da máquina, as quais podem invalidar o modelo e as ações de controle. Nesse sentido, uma estimativa correta dos parâmetros da máquina, torna-se fundamental para o acionamento. Este trabalho propõe o desenvolvimento e implementação de um estimador baseado em um sistema de inferência neuro-fuzzy adaptativo (ANFIS) para o controle de velocidade do motor de indução trifásico em um acionamento sem sensores. Pelo fato do acionamento em malha fechada admitir diversas velocidades de regime estacionário para o motor, uma nova metodologia de treinamento por partição de frequência é proposta. Ainda, faz-se a validação do sistema utilizando a orientação de campo magnético no referencial de campo de entreferro da máquina. Simulações para avaliação do desempenho do estimador mediante o acionamento vetorial do motor foram realizadas utilizando o programa Matlab/Simulink. Para a validação prática do modelo, uma bancada de testes foi implementada; o acionamento do motor foi realizado por um inversor de frequência do tipo fonte de tensão (VSI) e o controle vetorial, incluindo o estimador neuro-fuzzy, foi realizado pelo pacote de tempo real do programa Matlab/Simulink, juntamente com uma placa de aquisição de dados da National Instruments.This work presents an alternative sensorless vector control of induction motors. Several techniques for induction motor control have been proposed in the literature. Among these is the field oriented control (FOC), strongly used in industries and also in this work. The main drawback of the FOC technique is its sensibility to deviations of the parameters of the machine, which can deteriorate the control actions. Therefore, an accurate determination of the machines parameters is mandatory to the drive system. This work proposes the development of an adaptive neuro-fuzzy inference system (ANFIS) estimator to control the angular speed of a three-phase induction motor in a sensorless drive. In a closed loop configuration, several speed commands can be imposed to the motor. Thus, a new frequency partition training of ANFIS is proposed. Moreover, the ANFIS speed estimator is validated in a magnetizing flux oriented control scheme. Simulations to evaluate the performance of the estimator considering the vector drive system were done by the Matlab/Simulink. To determine the benefits of the proposed model a practical system was implemented using a voltage source inverter (VSI) and the vector control including the ANFIS estimator, carried out by the Real Time Toolbox from Matlab/Simulink and a data acquisition card from National Instruments.Biblioteca Digitais de Teses e Dissertações da USPKaiser, WalterLima, Fábio2010-07-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-20092011-150232/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-20092011-150232Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
Neuro-fuzzy speed estimator applied to sensorless induction motor drives.
title Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
spellingShingle Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
Lima, Fábio
Acionamento sem sensores
ANFIS
ANFIS
Artificial neural networks
Fuzzy logic
Induction motors
Lógica Fuzzy
Motor de indução
Redes neurais artificiais
Sensorless drives
title_short Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
title_full Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
title_fullStr Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
title_full_unstemmed Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
title_sort Estimador neuro-fuzzy de velocidade aplicado ao controle vetorial sem sensores de motores de indução trifásicos.
author Lima, Fábio
author_facet Lima, Fábio
author_role author
dc.contributor.none.fl_str_mv Kaiser, Walter
dc.contributor.author.fl_str_mv Lima, Fábio
dc.subject.por.fl_str_mv Acionamento sem sensores
ANFIS
ANFIS
Artificial neural networks
Fuzzy logic
Induction motors
Lógica Fuzzy
Motor de indução
Redes neurais artificiais
Sensorless drives
topic Acionamento sem sensores
ANFIS
ANFIS
Artificial neural networks
Fuzzy logic
Induction motors
Lógica Fuzzy
Motor de indução
Redes neurais artificiais
Sensorless drives
description Este trabalho apresenta uma alternativa ao controle vetorial de motores de indução, sem a utilização de sensores para realimentação da velocidade mecânica do motor. Ao longo do tempo, diversas técnicas de controle vetorial têm sido propostas na literatura. Dentre elas está a técnica de controle por orientação de campo (FOC), muito utilizada na indústria e presente também neste trabalho. A principal desvantagem do FOC é a sua grande sensibilidade às variações paramétricas da máquina, as quais podem invalidar o modelo e as ações de controle. Nesse sentido, uma estimativa correta dos parâmetros da máquina, torna-se fundamental para o acionamento. Este trabalho propõe o desenvolvimento e implementação de um estimador baseado em um sistema de inferência neuro-fuzzy adaptativo (ANFIS) para o controle de velocidade do motor de indução trifásico em um acionamento sem sensores. Pelo fato do acionamento em malha fechada admitir diversas velocidades de regime estacionário para o motor, uma nova metodologia de treinamento por partição de frequência é proposta. Ainda, faz-se a validação do sistema utilizando a orientação de campo magnético no referencial de campo de entreferro da máquina. Simulações para avaliação do desempenho do estimador mediante o acionamento vetorial do motor foram realizadas utilizando o programa Matlab/Simulink. Para a validação prática do modelo, uma bancada de testes foi implementada; o acionamento do motor foi realizado por um inversor de frequência do tipo fonte de tensão (VSI) e o controle vetorial, incluindo o estimador neuro-fuzzy, foi realizado pelo pacote de tempo real do programa Matlab/Simulink, juntamente com uma placa de aquisição de dados da National Instruments.
publishDate 2010
dc.date.none.fl_str_mv 2010-07-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3143/tde-20092011-150232/
url http://www.teses.usp.br/teses/disponiveis/3/3143/tde-20092011-150232/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257181035954176