Modelos de regressão sobre dados composicionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170807/ |
Resumo: | Dados composicionais são constituídos por vetores cujas componentes representam as proporções de algum montante, isto é: vetores com entradas positivas cuja soma é igual a 1. Em diversas áreas do conhecimento, o problema de estimar as partes $y_1, y_2, \\dots, y_D$ correspondentes aos setores $SE_1, SE_2, \\dots, SE_D$, de uma certa quantidade $Q$, aparece com frequência. As porcentagens $y_1, y_2, \\dots, y_D$ de intenção de votos correspondentes aos candidatos $Ca_1, Ca_2, \\dots, Ca_D$ em eleições governamentais ou as parcelas de mercado correspondentes a industrias concorrentes formam exemplos típicos. Naturalmente, é de grande interesse analisar como variam tais proporções em função de certas mudanças contextuais, por exemplo, a localização geográfica ou o tempo. Em qualquer ambiente competitivo, informações sobre esse comportamento são de grande auxílio para a elaboração das estratégias dos concorrentes. Neste trabalho, apresentamos e discutimos algumas abordagens propostas na literatura para regressão sobre dados composicionais, assim como alguns métodos de seleção de modelos baseados em inferência bayesiana. \\\\ |
id |
USP_af859d00188137fce9036ff2f5f82863 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-21052012-170807 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos de regressão sobre dados composicionaisRegression model for Compositional dataBICBICCompositional dataDados composicionaisFBSTFBSTModel selectionModelos de regressãoRegression modelsSeleção de modelosDados composicionais são constituídos por vetores cujas componentes representam as proporções de algum montante, isto é: vetores com entradas positivas cuja soma é igual a 1. Em diversas áreas do conhecimento, o problema de estimar as partes $y_1, y_2, \\dots, y_D$ correspondentes aos setores $SE_1, SE_2, \\dots, SE_D$, de uma certa quantidade $Q$, aparece com frequência. As porcentagens $y_1, y_2, \\dots, y_D$ de intenção de votos correspondentes aos candidatos $Ca_1, Ca_2, \\dots, Ca_D$ em eleições governamentais ou as parcelas de mercado correspondentes a industrias concorrentes formam exemplos típicos. Naturalmente, é de grande interesse analisar como variam tais proporções em função de certas mudanças contextuais, por exemplo, a localização geográfica ou o tempo. Em qualquer ambiente competitivo, informações sobre esse comportamento são de grande auxílio para a elaboração das estratégias dos concorrentes. Neste trabalho, apresentamos e discutimos algumas abordagens propostas na literatura para regressão sobre dados composicionais, assim como alguns métodos de seleção de modelos baseados em inferência bayesiana. \\\\Compositional data consist of vectors whose components are the proportions of some whole. The problem of estimating the portions $y_1, y_2, \\dots, y_D$ corresponding to the pieces $SE_1, SE_2, \\dots, SE_D$ of some whole $Q$ is often required in several domains of knowledge. The percentages $y_1, y_2, \\dots, y_D$ of votes corresponding to the competitors $Ca_1, Ca_2, \\dots, Ca_D$ in governmental elections or market share problems are typical examples. Of course, it is of great interest to study the behavior of such proportions according to some contextual transitions. In any competitive environmet, additional information of such behavior can be very helpful for the strategists to make proper decisions. In this work we present and discuss some approaches proposed by different authors for compositional data regression as well as some model selection methods based on bayesian inference.\\\\Biblioteca Digitais de Teses e Dissertações da USPLauretto, Marcelo de SouzaCamargo, André Pierro de2011-12-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170807/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:31Zoai:teses.usp.br:tde-21052012-170807Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:31Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos de regressão sobre dados composicionais Regression model for Compositional data |
title |
Modelos de regressão sobre dados composicionais |
spellingShingle |
Modelos de regressão sobre dados composicionais Camargo, André Pierro de BIC BIC Compositional data Dados composicionais FBST FBST Model selection Modelos de regressão Regression models Seleção de modelos |
title_short |
Modelos de regressão sobre dados composicionais |
title_full |
Modelos de regressão sobre dados composicionais |
title_fullStr |
Modelos de regressão sobre dados composicionais |
title_full_unstemmed |
Modelos de regressão sobre dados composicionais |
title_sort |
Modelos de regressão sobre dados composicionais |
author |
Camargo, André Pierro de |
author_facet |
Camargo, André Pierro de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lauretto, Marcelo de Souza |
dc.contributor.author.fl_str_mv |
Camargo, André Pierro de |
dc.subject.por.fl_str_mv |
BIC BIC Compositional data Dados composicionais FBST FBST Model selection Modelos de regressão Regression models Seleção de modelos |
topic |
BIC BIC Compositional data Dados composicionais FBST FBST Model selection Modelos de regressão Regression models Seleção de modelos |
description |
Dados composicionais são constituídos por vetores cujas componentes representam as proporções de algum montante, isto é: vetores com entradas positivas cuja soma é igual a 1. Em diversas áreas do conhecimento, o problema de estimar as partes $y_1, y_2, \\dots, y_D$ correspondentes aos setores $SE_1, SE_2, \\dots, SE_D$, de uma certa quantidade $Q$, aparece com frequência. As porcentagens $y_1, y_2, \\dots, y_D$ de intenção de votos correspondentes aos candidatos $Ca_1, Ca_2, \\dots, Ca_D$ em eleições governamentais ou as parcelas de mercado correspondentes a industrias concorrentes formam exemplos típicos. Naturalmente, é de grande interesse analisar como variam tais proporções em função de certas mudanças contextuais, por exemplo, a localização geográfica ou o tempo. Em qualquer ambiente competitivo, informações sobre esse comportamento são de grande auxílio para a elaboração das estratégias dos concorrentes. Neste trabalho, apresentamos e discutimos algumas abordagens propostas na literatura para regressão sobre dados composicionais, assim como alguns métodos de seleção de modelos baseados em inferência bayesiana. \\\\ |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170807/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170807/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257238901620736 |