Modelo estocástico para um sistema predador-presa.

Detalhes bibliográficos
Autor(a) principal: Satulovsky, Javier Eduardo
Data de Publicação: 1995
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43133/tde-28022014-111840/
Resumo: Neste trabalho introduzimos e estudamos um modelo estocástico de gás de rede para descrever a evolução de um sistema de partículas interagentes que representam duas espécies: presas e predadores. As presas se reproduzem autocataliticamente ocupando sítios vazios de uma rede. Os predadores também se reproduzem autocataliticamente mas às expensas das presas, e morrem via aniquilação espontânea. As regras locais e irreversíveis do modelo, de dois parâmetros, são inspiradas no modelo de Lotka-Volterra e no processo de contato. No regime estacionário o modelo apresenta três fases. A primeira corresponde a um estado absorvente em que as presas cobrem toda a rede. A segunda é caracterizada por valores médios não nulos das densidades de cada espécie. Á medida que variamos os parâmetros dentro dessa fase surgem oscilações locais nas densidades. A segunda fase está separada da primeira através de uma linha de transição de fases cinética contínua. Essa linha crítica encontra-se na classe de universalidade da percolação dirigida em d+1 dimensões, com exceção de um ponto terminal que pertence à classe de universalidade da percolação ordinária. A terceira fase corresponde a um outro estado absorvente em que as duas espécies foram exterminadas. A transição da segunda para a terceira fase é contínua e também pertence à classe de universalidade da percolação dirigida em d+1 dimensões. Os resultados foram obtidos por meio de simulações computacionais bem como através de métodos analíticos aproximados
id USP_b062ae8b632f08dd8548c2f08251795f
oai_identifier_str oai:teses.usp.br:tde-28022014-111840
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelo estocástico para um sistema predador-presa.Stochastic model for a predator-prey system.Física do estado sólidoMecânica estatísticaSolid state physicsStatistical mechanicsNeste trabalho introduzimos e estudamos um modelo estocástico de gás de rede para descrever a evolução de um sistema de partículas interagentes que representam duas espécies: presas e predadores. As presas se reproduzem autocataliticamente ocupando sítios vazios de uma rede. Os predadores também se reproduzem autocataliticamente mas às expensas das presas, e morrem via aniquilação espontânea. As regras locais e irreversíveis do modelo, de dois parâmetros, são inspiradas no modelo de Lotka-Volterra e no processo de contato. No regime estacionário o modelo apresenta três fases. A primeira corresponde a um estado absorvente em que as presas cobrem toda a rede. A segunda é caracterizada por valores médios não nulos das densidades de cada espécie. Á medida que variamos os parâmetros dentro dessa fase surgem oscilações locais nas densidades. A segunda fase está separada da primeira através de uma linha de transição de fases cinética contínua. Essa linha crítica encontra-se na classe de universalidade da percolação dirigida em d+1 dimensões, com exceção de um ponto terminal que pertence à classe de universalidade da percolação ordinária. A terceira fase corresponde a um outro estado absorvente em que as duas espécies foram exterminadas. A transição da segunda para a terceira fase é contínua e também pertence à classe de universalidade da percolação dirigida em d+1 dimensões. Os resultados foram obtidos por meio de simulações computacionais bem como através de métodos analíticos aproximadosIn this work, we introduce and study a stochastic lattice gas model for the evolution of an interacting particle system describing two species: prey and predators. Prey undergo autocatalytic reproduction on empty sites of a lattice. Predators also reproduce autocatalytically at the expense of prey, as well as suffer spontaneous annihilations. The irreversible local rules of the model, involving two parameters, are inspired both in the Lotka-Volterra model and the contact process. In the stationary regime, the model shows three phases. The first one is associated to an absorbing state in which the lattice is completely covered by prey. The second one is characterized by finite values of the density of each species. As we tune the parameters values inside that phase, local oscillations in the population densities start to appear. The second phase is reached from the first one through a line of continuous kinetic phase transitions. The line belongs to the universality class of directed percolation in d+1 dimensions, except for its terminal point, which belongs to the universality class of ordinary percolation. The third phase corresponds to another absorbing state completely devoided of particles. The transition from the second to the third phase is continuous and also belongs to universality class of directed percolation in d+1 dimensions. The model has been studied by means of computer simulations as well as by using approximate analytical technics.Biblioteca Digitais de Teses e Dissertações da USPCastro, Tania Tome Martins deSatulovsky, Javier Eduardo1995-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43133/tde-28022014-111840/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:47Zoai:teses.usp.br:tde-28022014-111840Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelo estocástico para um sistema predador-presa.
Stochastic model for a predator-prey system.
title Modelo estocástico para um sistema predador-presa.
spellingShingle Modelo estocástico para um sistema predador-presa.
Satulovsky, Javier Eduardo
Física do estado sólido
Mecânica estatística
Solid state physics
Statistical mechanics
title_short Modelo estocástico para um sistema predador-presa.
title_full Modelo estocástico para um sistema predador-presa.
title_fullStr Modelo estocástico para um sistema predador-presa.
title_full_unstemmed Modelo estocástico para um sistema predador-presa.
title_sort Modelo estocástico para um sistema predador-presa.
author Satulovsky, Javier Eduardo
author_facet Satulovsky, Javier Eduardo
author_role author
dc.contributor.none.fl_str_mv Castro, Tania Tome Martins de
dc.contributor.author.fl_str_mv Satulovsky, Javier Eduardo
dc.subject.por.fl_str_mv Física do estado sólido
Mecânica estatística
Solid state physics
Statistical mechanics
topic Física do estado sólido
Mecânica estatística
Solid state physics
Statistical mechanics
description Neste trabalho introduzimos e estudamos um modelo estocástico de gás de rede para descrever a evolução de um sistema de partículas interagentes que representam duas espécies: presas e predadores. As presas se reproduzem autocataliticamente ocupando sítios vazios de uma rede. Os predadores também se reproduzem autocataliticamente mas às expensas das presas, e morrem via aniquilação espontânea. As regras locais e irreversíveis do modelo, de dois parâmetros, são inspiradas no modelo de Lotka-Volterra e no processo de contato. No regime estacionário o modelo apresenta três fases. A primeira corresponde a um estado absorvente em que as presas cobrem toda a rede. A segunda é caracterizada por valores médios não nulos das densidades de cada espécie. Á medida que variamos os parâmetros dentro dessa fase surgem oscilações locais nas densidades. A segunda fase está separada da primeira através de uma linha de transição de fases cinética contínua. Essa linha crítica encontra-se na classe de universalidade da percolação dirigida em d+1 dimensões, com exceção de um ponto terminal que pertence à classe de universalidade da percolação ordinária. A terceira fase corresponde a um outro estado absorvente em que as duas espécies foram exterminadas. A transição da segunda para a terceira fase é contínua e também pertence à classe de universalidade da percolação dirigida em d+1 dimensões. Os resultados foram obtidos por meio de simulações computacionais bem como através de métodos analíticos aproximados
publishDate 1995
dc.date.none.fl_str_mv 1995-12-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43133/tde-28022014-111840/
url http://www.teses.usp.br/teses/disponiveis/43/43133/tde-28022014-111840/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257425600577536