Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo

Detalhes bibliográficos
Autor(a) principal: Pizarro, Maria de Lourdes Pimentel
Data de Publicação: 2009
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18139/tde-08122009-082905/
Resumo: Devido aos riscos de contaminação dos recursos naturais solo e água, ao alto custo, ao tempo e ao esforço humano nas investigações de campo, os modelos matemáticos, aliados às técnicas numéricas e aos avanços computacionais, constituem uma ferramenta importante na previsão do deslocamento de solutos, contribuindo assim, para o controle de alterações ambientais. No Brasil, a modelação de fluxo e transporte de solutos na zona não-saturada é voltada, quase que exclusivamente, aos problemas relacionados às atividades agrícolas. Entretanto, tão importante quanto a problemática dos produtos químicos nas atividades agrícolas é a questão de poluição e contaminação do solo e da água por chorume, gerado pelos resíduos sólidos domiciliares. Neste trabalho, é desenvolvido e validado um modelo computacional unidimensional para simulação de fluxo e transporte de solutos na zona não-saturada do solo. O modelo matemático é dado pela equação diferencial parcial não-linear de Richards, que rege o movimento de água no solo, e a equação diferencial parcial linear de advecção-dispersão, do transporte de solutos, acompanhadas das condições iniciais e de contorno. A equação de Richards é dada em função do potencial matricial da água e a equação de transporte de solutos estima a evolução temporal da concentração de solutos no perfil do solo. Devido à dificuldade de se obter soluções analíticas destas equações, são resolvidas numericamente pelo método de elementos finitos. As referidas equações são resolvidas utilizando-se malhas uniformes inicialmente. Com a finalidade de obter simulações mais eficientes, a um custo computacional reduzido, é empregada a adaptatividade com refinamento h na malha de elementos finitos. A função interpolação polinomial utilizada é de grau 2 ou maior que garante a conservação de massa. Na equação de Richards, a derivada temporal é aproximada por um quociente de diferença finita e é aplicado o esquema de Euler explícito e na equação de advecção-dispersão, é aproximada por um quociente de diferença finita, aplicando-se o esquema de Euler implícito, devido à linearidade da equação. O sistema operacional é o Linux Ubuntu 32 bits, o ambiente de programação é o PZ, escrito em linguagem de programação C++. Na validação do modelo, utilizam-se dados disponíveis na literatura. Os resultados são comparados, utilizando-se malhas uniformes e malhas adaptativas com refinamento h. Usando-se as malhas uniformes para o problema de Richards e de transporte de potássio, o tempo de execução é de 22 minutos e a memória utilizada de 6164 Kb. Com as malhas adaptadas, o tempo de execução é de 3 minutos e 27 segundos, consumindo 5876 Kb de memória. Houve, portanto, uma redução de 84,32% no tempo de execução, usando-se malhas adaptativas. A utilização da função interpolação polinomial de grau 2 ou maior e o refinamento h, permitem uma boa concordância do modelo na comparação com soluções disponíveis na literatura.
id USP_b1ed11139371004469192e9dfbc1dd95
oai_identifier_str oai:teses.usp.br:tde-08122009-082905
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativoSimulation of water flow and solute transport in the unsaturated zone of the soil by adaptative finite element methodAdvection-dispersion equationAterro sanitárioChorumeEquação de advecção-dispersãoEquação de RichardsFinite element methodLeachateMétodo de elementos finitosModelo numéricoNumerical modelingRichards equationSanitary landfillUnsaturated zoneZona não-saturadaDevido aos riscos de contaminação dos recursos naturais solo e água, ao alto custo, ao tempo e ao esforço humano nas investigações de campo, os modelos matemáticos, aliados às técnicas numéricas e aos avanços computacionais, constituem uma ferramenta importante na previsão do deslocamento de solutos, contribuindo assim, para o controle de alterações ambientais. No Brasil, a modelação de fluxo e transporte de solutos na zona não-saturada é voltada, quase que exclusivamente, aos problemas relacionados às atividades agrícolas. Entretanto, tão importante quanto a problemática dos produtos químicos nas atividades agrícolas é a questão de poluição e contaminação do solo e da água por chorume, gerado pelos resíduos sólidos domiciliares. Neste trabalho, é desenvolvido e validado um modelo computacional unidimensional para simulação de fluxo e transporte de solutos na zona não-saturada do solo. O modelo matemático é dado pela equação diferencial parcial não-linear de Richards, que rege o movimento de água no solo, e a equação diferencial parcial linear de advecção-dispersão, do transporte de solutos, acompanhadas das condições iniciais e de contorno. A equação de Richards é dada em função do potencial matricial da água e a equação de transporte de solutos estima a evolução temporal da concentração de solutos no perfil do solo. Devido à dificuldade de se obter soluções analíticas destas equações, são resolvidas numericamente pelo método de elementos finitos. As referidas equações são resolvidas utilizando-se malhas uniformes inicialmente. Com a finalidade de obter simulações mais eficientes, a um custo computacional reduzido, é empregada a adaptatividade com refinamento h na malha de elementos finitos. A função interpolação polinomial utilizada é de grau 2 ou maior que garante a conservação de massa. Na equação de Richards, a derivada temporal é aproximada por um quociente de diferença finita e é aplicado o esquema de Euler explícito e na equação de advecção-dispersão, é aproximada por um quociente de diferença finita, aplicando-se o esquema de Euler implícito, devido à linearidade da equação. O sistema operacional é o Linux Ubuntu 32 bits, o ambiente de programação é o PZ, escrito em linguagem de programação C++. Na validação do modelo, utilizam-se dados disponíveis na literatura. Os resultados são comparados, utilizando-se malhas uniformes e malhas adaptativas com refinamento h. Usando-se as malhas uniformes para o problema de Richards e de transporte de potássio, o tempo de execução é de 22 minutos e a memória utilizada de 6164 Kb. Com as malhas adaptadas, o tempo de execução é de 3 minutos e 27 segundos, consumindo 5876 Kb de memória. Houve, portanto, uma redução de 84,32% no tempo de execução, usando-se malhas adaptativas. A utilização da função interpolação polinomial de grau 2 ou maior e o refinamento h, permitem uma boa concordância do modelo na comparação com soluções disponíveis na literatura.Due to the risks of contamination of soil and water resources, the high cost, time and human effort in the field investigations, the mathematical models, combined with numerical techniques and computational advances, are important tools in forecasting the movement of solutes thereby contributing to the control of environmental alteration. In Brazil, modeling of flow and solute transport in the unsaturated zone is focused, almost exclusively, on problems related to agricultural activities. However, as important as the problematical of chemicals products in agricultural activities is the issue of pollution and contamination of soil and water by leachate, generated by municipal solid wastes. In this work, an one-dimensional computational model for simulation of flow and solute transport in the unsaturated soil has been developed and validated. The mathematical model is given by the Richards\'s non-linear partial differential equation, which determines the movement of water in the soil, and the advection-dispersion linear partial differential equation, of the solute transport, together with initial and boundary conditions. The Richards equation is a function of the water pressure head and the solute transport equation estimate the temporal evolution of the solutes concentration in the soil profile. Due to the difficulty of obtaining analytical solutions of these equations, they are solved numerically using the finite element method. The governing equations are solved using initially a uniform mesh. In order to obtain more efficient simulations with low computational cost, adaptativity with h refinement on the finite element mesh is implemented. The interpolation function is of degree two or higher, assuring mass conservation. In Richards\' equation, the temporal derivative is approximated by Euler explicit finite difference. For the advection-dispersion equation, due to the linearity of the equation, an implicit finite difference scheme is used. The code is written in the programming language C++ based on the programming environment PZ using operating system Linux Ubuntu 32 bit. Model results are validated in comparison with data available in the literature. The results are evaluated using uniform meshes and with h refinement adaptive mesh. Using the uniform meshes for the problem of Richards and transport of potassium, the running time is 22 minutes and 6164 Kb of memory is used. With the adapted meshes, the execution time is 3 minutes and 27 seconds, consuming 5,876 Kb of memory. Therefore there was a reduction of 84.32% in execution time, using adaptive meshes. The interpolation function with degree two or higher and the h refinement, with reduction of the computation time, showed a good agreement in comparison with the literature.Biblioteca Digitais de Teses e Dissertações da USPWendland, Edson CezarPizarro, Maria de Lourdes Pimentel2009-10-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18139/tde-08122009-082905/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-08122009-082905Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
Simulation of water flow and solute transport in the unsaturated zone of the soil by adaptative finite element method
title Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
spellingShingle Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
Pizarro, Maria de Lourdes Pimentel
Advection-dispersion equation
Aterro sanitário
Chorume
Equação de advecção-dispersão
Equação de Richards
Finite element method
Leachate
Método de elementos finitos
Modelo numérico
Numerical modeling
Richards equation
Sanitary landfill
Unsaturated zone
Zona não-saturada
title_short Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
title_full Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
title_fullStr Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
title_full_unstemmed Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
title_sort Simulação de fluxo de água e transporte de solutos na zona não-saturada do solo pelo método de elementos finitos adaptativo
author Pizarro, Maria de Lourdes Pimentel
author_facet Pizarro, Maria de Lourdes Pimentel
author_role author
dc.contributor.none.fl_str_mv Wendland, Edson Cezar
dc.contributor.author.fl_str_mv Pizarro, Maria de Lourdes Pimentel
dc.subject.por.fl_str_mv Advection-dispersion equation
Aterro sanitário
Chorume
Equação de advecção-dispersão
Equação de Richards
Finite element method
Leachate
Método de elementos finitos
Modelo numérico
Numerical modeling
Richards equation
Sanitary landfill
Unsaturated zone
Zona não-saturada
topic Advection-dispersion equation
Aterro sanitário
Chorume
Equação de advecção-dispersão
Equação de Richards
Finite element method
Leachate
Método de elementos finitos
Modelo numérico
Numerical modeling
Richards equation
Sanitary landfill
Unsaturated zone
Zona não-saturada
description Devido aos riscos de contaminação dos recursos naturais solo e água, ao alto custo, ao tempo e ao esforço humano nas investigações de campo, os modelos matemáticos, aliados às técnicas numéricas e aos avanços computacionais, constituem uma ferramenta importante na previsão do deslocamento de solutos, contribuindo assim, para o controle de alterações ambientais. No Brasil, a modelação de fluxo e transporte de solutos na zona não-saturada é voltada, quase que exclusivamente, aos problemas relacionados às atividades agrícolas. Entretanto, tão importante quanto a problemática dos produtos químicos nas atividades agrícolas é a questão de poluição e contaminação do solo e da água por chorume, gerado pelos resíduos sólidos domiciliares. Neste trabalho, é desenvolvido e validado um modelo computacional unidimensional para simulação de fluxo e transporte de solutos na zona não-saturada do solo. O modelo matemático é dado pela equação diferencial parcial não-linear de Richards, que rege o movimento de água no solo, e a equação diferencial parcial linear de advecção-dispersão, do transporte de solutos, acompanhadas das condições iniciais e de contorno. A equação de Richards é dada em função do potencial matricial da água e a equação de transporte de solutos estima a evolução temporal da concentração de solutos no perfil do solo. Devido à dificuldade de se obter soluções analíticas destas equações, são resolvidas numericamente pelo método de elementos finitos. As referidas equações são resolvidas utilizando-se malhas uniformes inicialmente. Com a finalidade de obter simulações mais eficientes, a um custo computacional reduzido, é empregada a adaptatividade com refinamento h na malha de elementos finitos. A função interpolação polinomial utilizada é de grau 2 ou maior que garante a conservação de massa. Na equação de Richards, a derivada temporal é aproximada por um quociente de diferença finita e é aplicado o esquema de Euler explícito e na equação de advecção-dispersão, é aproximada por um quociente de diferença finita, aplicando-se o esquema de Euler implícito, devido à linearidade da equação. O sistema operacional é o Linux Ubuntu 32 bits, o ambiente de programação é o PZ, escrito em linguagem de programação C++. Na validação do modelo, utilizam-se dados disponíveis na literatura. Os resultados são comparados, utilizando-se malhas uniformes e malhas adaptativas com refinamento h. Usando-se as malhas uniformes para o problema de Richards e de transporte de potássio, o tempo de execução é de 22 minutos e a memória utilizada de 6164 Kb. Com as malhas adaptadas, o tempo de execução é de 3 minutos e 27 segundos, consumindo 5876 Kb de memória. Houve, portanto, uma redução de 84,32% no tempo de execução, usando-se malhas adaptativas. A utilização da função interpolação polinomial de grau 2 ou maior e o refinamento h, permitem uma boa concordância do modelo na comparação com soluções disponíveis na literatura.
publishDate 2009
dc.date.none.fl_str_mv 2009-10-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18139/tde-08122009-082905/
url http://www.teses.usp.br/teses/disponiveis/18/18139/tde-08122009-082905/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256816975609856