Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações

Detalhes bibliográficos
Autor(a) principal: Cruz, Laura Elizabeth Florian
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122012-095421/
Resumo: Na maioria dos processos de análise de imagens há a necessidade de um pré-processamento, no qual são extraídos e calculados vetores de características que representem as imagens são utilizados no cálculo de similaridade. Uma dificuldade nessas tarefas é o grande número de características que definem um espaço de alta dimensionalidade, afetando fortemente o desempenho das tarefas que seguem, que podem envolver uma análise visual, um agrupamento ou uma classificação de dados, por exemplo. Lidar com esse problema normalmente exige técnicas de redução de dimensionalidade ou seleção de características. O presente trabalho dá sequência a trabalhos que utilizam técnicas de visualização como suporte para avaliar espaços de características gerados a partir de coleções de imagens. Nele, objetiva-se aprimorar um método baseado na análise visual de conjuntos de imagens empregando a árvore de similaridade Neighbor-Joining que apoia o usuário a selecionar um subespaço de características que mantenha ou melhore os resultados das visualizações do conjunto de imagens. A partir da metodologia proposta, a avaliação e a seleção de características representativas é realizada usando a visualização NJ. A maior parte dos experimentos responde positivamente para diferentes conjuntos de imagens representados por vários extratores, obtendo-se processos de seleção personalizados mais precisos e eficazes, em termos de agrupamento, do que abordagens automáticas reportadas na literatura
id USP_b1fb97fb828b57965799126674305af8
oai_identifier_str oai:teses.usp.br:tde-05122012-095421
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicaçõesApproach based on information visualization techniques for evaluation of image features and applicationsAnálise visual do espaço de característicasÁrvores de similaridadeInformation visualizationMineração visual de imagensMiningSeleção de característicasSimilarity treesVisual analysis of the feature spaceVisual imagesVisualização de informaçãoNa maioria dos processos de análise de imagens há a necessidade de um pré-processamento, no qual são extraídos e calculados vetores de características que representem as imagens são utilizados no cálculo de similaridade. Uma dificuldade nessas tarefas é o grande número de características que definem um espaço de alta dimensionalidade, afetando fortemente o desempenho das tarefas que seguem, que podem envolver uma análise visual, um agrupamento ou uma classificação de dados, por exemplo. Lidar com esse problema normalmente exige técnicas de redução de dimensionalidade ou seleção de características. O presente trabalho dá sequência a trabalhos que utilizam técnicas de visualização como suporte para avaliar espaços de características gerados a partir de coleções de imagens. Nele, objetiva-se aprimorar um método baseado na análise visual de conjuntos de imagens empregando a árvore de similaridade Neighbor-Joining que apoia o usuário a selecionar um subespaço de características que mantenha ou melhore os resultados das visualizações do conjunto de imagens. A partir da metodologia proposta, a avaliação e a seleção de características representativas é realizada usando a visualização NJ. A maior parte dos experimentos responde positivamente para diferentes conjuntos de imagens representados por vários extratores, obtendo-se processos de seleção personalizados mais precisos e eficazes, em termos de agrupamento, do que abordagens automáticas reportadas na literaturaIn the majority of the image analysis processes there is need for a pre-processing step, in which feature vectors representative of the images are extracted and similarity methods are calculates. A difficult step in the process is to choose amongst the large number of features available, that will define a feature space of high dimensionality, impacting the cost of the subsequent processing tasks, such as visual analysis, clustering and classification. This problem is usually handled by dimension reduction of feature selection techniques. This work extends and improves previous work that employs visualization and visual analysis techniques to support evaluation of feature spaces created from image collections. The goal is to improve a previous method of feature selection through visualization to employ similarity trees via the Neighbor Joining (NJ) algorithm as the basis for the visual layout, as well as to improve the choices of the analyst regarding tools for visual selection of features. The same process can be employed to support evaluation of feature spaces using the NJ visualization. The majorities of experiments results in improvement of spaces generated by various extractors, yielding personalized selection process that are more precisely related to user\'s perspective of the data set and are perform similarly or better than automatic approaches available in the literature. Keywords: information visualization, mining, visual images, visual analysis of the feature space, similarity treesBiblioteca Digitais de Teses e Dissertações da USPMinghim, RosaneCruz, Laura Elizabeth Florian2012-09-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122012-095421/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:35Zoai:teses.usp.br:tde-05122012-095421Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
Approach based on information visualization techniques for evaluation of image features and applications
title Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
spellingShingle Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
Cruz, Laura Elizabeth Florian
Análise visual do espaço de características
Árvores de similaridade
Information visualization
Mineração visual de imagens
Mining
Seleção de características
Similarity trees
Visual analysis of the feature space
Visual images
Visualização de informação
title_short Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
title_full Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
title_fullStr Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
title_full_unstemmed Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
title_sort Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações
author Cruz, Laura Elizabeth Florian
author_facet Cruz, Laura Elizabeth Florian
author_role author
dc.contributor.none.fl_str_mv Minghim, Rosane
dc.contributor.author.fl_str_mv Cruz, Laura Elizabeth Florian
dc.subject.por.fl_str_mv Análise visual do espaço de características
Árvores de similaridade
Information visualization
Mineração visual de imagens
Mining
Seleção de características
Similarity trees
Visual analysis of the feature space
Visual images
Visualização de informação
topic Análise visual do espaço de características
Árvores de similaridade
Information visualization
Mineração visual de imagens
Mining
Seleção de características
Similarity trees
Visual analysis of the feature space
Visual images
Visualização de informação
description Na maioria dos processos de análise de imagens há a necessidade de um pré-processamento, no qual são extraídos e calculados vetores de características que representem as imagens são utilizados no cálculo de similaridade. Uma dificuldade nessas tarefas é o grande número de características que definem um espaço de alta dimensionalidade, afetando fortemente o desempenho das tarefas que seguem, que podem envolver uma análise visual, um agrupamento ou uma classificação de dados, por exemplo. Lidar com esse problema normalmente exige técnicas de redução de dimensionalidade ou seleção de características. O presente trabalho dá sequência a trabalhos que utilizam técnicas de visualização como suporte para avaliar espaços de características gerados a partir de coleções de imagens. Nele, objetiva-se aprimorar um método baseado na análise visual de conjuntos de imagens empregando a árvore de similaridade Neighbor-Joining que apoia o usuário a selecionar um subespaço de características que mantenha ou melhore os resultados das visualizações do conjunto de imagens. A partir da metodologia proposta, a avaliação e a seleção de características representativas é realizada usando a visualização NJ. A maior parte dos experimentos responde positivamente para diferentes conjuntos de imagens representados por vários extratores, obtendo-se processos de seleção personalizados mais precisos e eficazes, em termos de agrupamento, do que abordagens automáticas reportadas na literatura
publishDate 2012
dc.date.none.fl_str_mv 2012-09-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122012-095421/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122012-095421/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256752298393600