Esfera Homológica de Poincaré
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45132/tde-01052023-133903/ |
Resumo: | A Esfera Homológica de Poincaré, também conhecida como Espaço dodecaédrico de Poincaré, foi apresentada por Poincaré com o intuito de responder a questão levantada por ele próprio sobre a homologia ser uma ferramenta topológica que caracteriza a esfera tridimensional. Pensando nisso, essa dissertação teve como objetivo apresentar uma construção detalhada dessa variedade tridimensional, que possibilitasse a conclusão de que ela não é uma esfera tridimensional, apesar de ter os mesmos grupos de homologia da esfera tridimensional. Essa construção se deu através da topologia quociente entre a esfera tridimensional e seu subgrupo denominado Grupo Icosaédrico Binário, uma duplicação do grupo de simetrias que preservam a orientação do sólido platônico conhecido como Dodecaedro. Essa relação é possível devido à identificação que esses dois espaços têm com grupos relacionados aos quatérnios. A partir dessa construção concluímos que o Grupo Fundamental, um importante invariante da topologia algébrica, da Esfera de homologia de Poincaré é o Grupo Icosaédrico Binário. Como o Grupo Fundamental da esfera tridimensional é trivial, esses espaços não podem ser homeomorfos. Com isso, garantimos que o Espaço dodecaédrico de Poincaré é um contra-exemplo para o questionamento mencionado. |
id |
USP_b63eecf5b218828125e50548f2e0785d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-01052023-133903 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Esfera Homológica de PoincaréPoincaré Homology SphereBinary Icosahedral GroupEsfera Homológica de PoincaréEsfera tridimensionalFundamental GroupGrupo FundamentalGrupo Icosaédrico BinárioPoincaré Homology SphereTridimensional sphereA Esfera Homológica de Poincaré, também conhecida como Espaço dodecaédrico de Poincaré, foi apresentada por Poincaré com o intuito de responder a questão levantada por ele próprio sobre a homologia ser uma ferramenta topológica que caracteriza a esfera tridimensional. Pensando nisso, essa dissertação teve como objetivo apresentar uma construção detalhada dessa variedade tridimensional, que possibilitasse a conclusão de que ela não é uma esfera tridimensional, apesar de ter os mesmos grupos de homologia da esfera tridimensional. Essa construção se deu através da topologia quociente entre a esfera tridimensional e seu subgrupo denominado Grupo Icosaédrico Binário, uma duplicação do grupo de simetrias que preservam a orientação do sólido platônico conhecido como Dodecaedro. Essa relação é possível devido à identificação que esses dois espaços têm com grupos relacionados aos quatérnios. A partir dessa construção concluímos que o Grupo Fundamental, um importante invariante da topologia algébrica, da Esfera de homologia de Poincaré é o Grupo Icosaédrico Binário. Como o Grupo Fundamental da esfera tridimensional é trivial, esses espaços não podem ser homeomorfos. Com isso, garantimos que o Espaço dodecaédrico de Poincaré é um contra-exemplo para o questionamento mencionado.The Poincaré Homology Sphere, also known as the Poincaré Dodecahedral Space, was presented by Poincaré in order to answer the question raised himself about homology being a topological tool that characterizes the three-dimensional sphere. With that in mind, the purpose of this dissertation was to carefully construct this three-dimensional manifold, which would allow the conclusion that it is not a three-dimensional sphere, despite having the same homology groups as the three-dimensional sphere. This construction arises from the quotient topology between the three-dimensional sphere and its subgroup called the Binary Icosahedral Group, a duplication of the group of symmetries that preserve the orientation of the Platonic solid known as the Dodecahedron. This relationship is possible due to the identification that these two spaces have with groups related to quaternions. From this construction, we conclude that the Fundamental Group, an important invariant of the algebraic topology, of the Poincaré homology sphere is the Binary Icosahedral Group. As the Fundamental Group of the three-dimensional sphere is trivial, these spaces cannot be homeomorphic. With this, we guarantee that the Poincaré Dodecahedral Space is a counterexample to the mentioned question.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Salles deBarreto, Amanda Lopes2023-03-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45132/tde-01052023-133903/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-05-03T19:44:04Zoai:teses.usp.br:tde-01052023-133903Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-05-03T19:44:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Esfera Homológica de Poincaré Poincaré Homology Sphere |
title |
Esfera Homológica de Poincaré |
spellingShingle |
Esfera Homológica de Poincaré Barreto, Amanda Lopes Binary Icosahedral Group Esfera Homológica de Poincaré Esfera tridimensional Fundamental Group Grupo Fundamental Grupo Icosaédrico Binário Poincaré Homology Sphere Tridimensional sphere |
title_short |
Esfera Homológica de Poincaré |
title_full |
Esfera Homológica de Poincaré |
title_fullStr |
Esfera Homológica de Poincaré |
title_full_unstemmed |
Esfera Homológica de Poincaré |
title_sort |
Esfera Homológica de Poincaré |
author |
Barreto, Amanda Lopes |
author_facet |
Barreto, Amanda Lopes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carvalho, André Salles de |
dc.contributor.author.fl_str_mv |
Barreto, Amanda Lopes |
dc.subject.por.fl_str_mv |
Binary Icosahedral Group Esfera Homológica de Poincaré Esfera tridimensional Fundamental Group Grupo Fundamental Grupo Icosaédrico Binário Poincaré Homology Sphere Tridimensional sphere |
topic |
Binary Icosahedral Group Esfera Homológica de Poincaré Esfera tridimensional Fundamental Group Grupo Fundamental Grupo Icosaédrico Binário Poincaré Homology Sphere Tridimensional sphere |
description |
A Esfera Homológica de Poincaré, também conhecida como Espaço dodecaédrico de Poincaré, foi apresentada por Poincaré com o intuito de responder a questão levantada por ele próprio sobre a homologia ser uma ferramenta topológica que caracteriza a esfera tridimensional. Pensando nisso, essa dissertação teve como objetivo apresentar uma construção detalhada dessa variedade tridimensional, que possibilitasse a conclusão de que ela não é uma esfera tridimensional, apesar de ter os mesmos grupos de homologia da esfera tridimensional. Essa construção se deu através da topologia quociente entre a esfera tridimensional e seu subgrupo denominado Grupo Icosaédrico Binário, uma duplicação do grupo de simetrias que preservam a orientação do sólido platônico conhecido como Dodecaedro. Essa relação é possível devido à identificação que esses dois espaços têm com grupos relacionados aos quatérnios. A partir dessa construção concluímos que o Grupo Fundamental, um importante invariante da topologia algébrica, da Esfera de homologia de Poincaré é o Grupo Icosaédrico Binário. Como o Grupo Fundamental da esfera tridimensional é trivial, esses espaços não podem ser homeomorfos. Com isso, garantimos que o Espaço dodecaédrico de Poincaré é um contra-exemplo para o questionamento mencionado. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-01052023-133903/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-01052023-133903/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256576714342400 |