2-DOF Laser Structure for Autonomous External Quadrotor Guidance

Detalhes bibliográficos
Autor(a) principal: Soler, Diego Pavan
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18149/tde-12052020-175028/
Resumo: This dissertation, 2-DOF Laser Structure for Autonomous External Quadrotor Guidance, has the goal of designing a novel method to attract an aerial robot to a ground vehicle using a system composed of a camera and a laser for autonomous landing. This applications is designed to be used alongside other guiding methods. This is a complex problem that requires work on different fields on both the ground and the aerial robot. On the ground station, know as Mirã, a structure was designed using 3D printed parts, and two stepper motor adjusted for 1:16 microstepping to precisely orient a camera and a laser with 2 DoF. The motor is controlled by a computer vision algorithm that uses four green LED on the aerial robot. With the combination of a light source filter and a color filter along with metric filters, the algorithm can find the LEDs position on the image. By estimating the distance of the center of the LED formation and the center of the image, the algorithm uses the camera calibration parameters to convert it to azimuth and elevation angles, allowing the structure to follow and target the laser on the aerial robot with a error of elevation = 4.96º and azimuth = 0.27º with a standard deviation of 1.03 and 0.51 degree. To call the aerial robot, the structure will perform a linear cut on the elevation motor, because of this, the azimuth precision is made much higher. On the aerial vehicle, using a 6 x 6 matrix of photodectors, a 0.5 x 0.5 m sensor was designed to be capable of estimating the position of the laser dot on the sensor at a rate of 200 Hz. The aerial robot will decode the sensor reading and acquire multiples instances of the readings, once possible, a linear approximation of the point collection is used to estimate a vector, the direction of the vector is estimated by looking at the older and newer points, resulting in a velocity vector which the aerial robot will follow. Once the vehicle is close enough, the structure will perform a cut in the opposite direction, commanding the aerial robot to stop and allowing for reliable autonomous landing.
id USP_b64f56412d0d56d09747457d75f79352
oai_identifier_str oai:teses.usp.br:tde-12052020-175028
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling 2-DOF Laser Structure for Autonomous External Quadrotor GuidanceDispositivo autônomo com 2 graus de liberdade para guiar um quadrotoragricultura de precisãocomputer visioncooperação robóticaprecision agriculturequadrotorquadrotorrobot cooperationUAVVANTvisão computacionalThis dissertation, 2-DOF Laser Structure for Autonomous External Quadrotor Guidance, has the goal of designing a novel method to attract an aerial robot to a ground vehicle using a system composed of a camera and a laser for autonomous landing. This applications is designed to be used alongside other guiding methods. This is a complex problem that requires work on different fields on both the ground and the aerial robot. On the ground station, know as Mirã, a structure was designed using 3D printed parts, and two stepper motor adjusted for 1:16 microstepping to precisely orient a camera and a laser with 2 DoF. The motor is controlled by a computer vision algorithm that uses four green LED on the aerial robot. With the combination of a light source filter and a color filter along with metric filters, the algorithm can find the LEDs position on the image. By estimating the distance of the center of the LED formation and the center of the image, the algorithm uses the camera calibration parameters to convert it to azimuth and elevation angles, allowing the structure to follow and target the laser on the aerial robot with a error of elevation = 4.96º and azimuth = 0.27º with a standard deviation of 1.03 and 0.51 degree. To call the aerial robot, the structure will perform a linear cut on the elevation motor, because of this, the azimuth precision is made much higher. On the aerial vehicle, using a 6 x 6 matrix of photodectors, a 0.5 x 0.5 m sensor was designed to be capable of estimating the position of the laser dot on the sensor at a rate of 200 Hz. The aerial robot will decode the sensor reading and acquire multiples instances of the readings, once possible, a linear approximation of the point collection is used to estimate a vector, the direction of the vector is estimated by looking at the older and newer points, resulting in a velocity vector which the aerial robot will follow. Once the vehicle is close enough, the structure will perform a cut in the opposite direction, commanding the aerial robot to stop and allowing for reliable autonomous landing.Esta dissertação, Dispositivo autônomo com 2 graus de liberdade para guiar um quadrotor, tem como objetivo projetar um novo método para atrais um veículo aéreo para um veículo terrestre usando um sistema composto de uma câmera e um laser para pouso autônomo. Esta aplicação foi projetada para ser usada em conjunto com outros métodos de localização. Este é um problema complexo que requer para sua solução o uso de metodologias em diferentes campos, tanto no robô aéreo quanto no terrestre. No robô terrestre, conhecido como Miriã, uma estrutura foi projetada usando peças impressas em impressora 3D, dois motores de passo ajustados para 1:16 micropasso são usados para orientar com precisão uma câmera e um laser com 2 DoF. O motor é controlado por um algoritmo de visão computacional que usa quatro LEDs verdes no robô aéreo. Com a combinação de um filtro de luz e um filtro de cor auxiliados por um filtro métrico, o algoritmo pode encontrar a posição dos LEDs na imagem. Ao estimar a distância entre o centro do objeto formado pelos LEDs e o centro da imagem. O algoritmo converte o valor em ângulos de azimute e elevação usando os parâmetros de calibração da câmera, permitindo assim que a estrutura siga e direcione o laser no robô aéreo, com um erro de elevação = 4.96º e azimute = 0.27º com desvio padrão de 1.03 e 0.51 grau, respectivamente. Para chamar o robô aéreo, a estrutura executará um corte linear, ao mover o motor de elevação e, por este motivo, a precisão em azimute é feita maior. No veículo aéreo, usando uma matriz de 6 x 6 fotodetectores, foi concebido um sensor de 0.5 x 0.5 m, capaz de estimar a posição do laser no sensor a uma taxa de 200 Hz. O veículo aéreo decodifica a leitura do sensor e armazena múltiplas instâncias das leituras, então uma aproximação linear dos pontos obtidos é usada para estimar a direção de um vetor, o sentido é estimado observando os pontos mais antigos e os mais recentes, resultando assim em um vetor velocidade que é enviado para o veículo aéreo seguir. Uma vez que o veículo esteja próximo o suficiente, a estrutura realizará um corte na direção oposta, comandando a parada do veículo aéreo e permitindo uma aterrissagem autônoma confiável.Biblioteca Digitais de Teses e Dissertações da USPBecker, MarceloSoler, Diego Pavan2019-09-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18149/tde-12052020-175028/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-05-20T21:39:01Zoai:teses.usp.br:tde-12052020-175028Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-05-20T21:39:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
Dispositivo autônomo com 2 graus de liberdade para guiar um quadrotor
title 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
spellingShingle 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
Soler, Diego Pavan
agricultura de precisão
computer vision
cooperação robótica
precision agriculture
quadrotor
quadrotor
robot cooperation
UAV
VANT
visão computacional
title_short 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
title_full 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
title_fullStr 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
title_full_unstemmed 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
title_sort 2-DOF Laser Structure for Autonomous External Quadrotor Guidance
author Soler, Diego Pavan
author_facet Soler, Diego Pavan
author_role author
dc.contributor.none.fl_str_mv Becker, Marcelo
dc.contributor.author.fl_str_mv Soler, Diego Pavan
dc.subject.por.fl_str_mv agricultura de precisão
computer vision
cooperação robótica
precision agriculture
quadrotor
quadrotor
robot cooperation
UAV
VANT
visão computacional
topic agricultura de precisão
computer vision
cooperação robótica
precision agriculture
quadrotor
quadrotor
robot cooperation
UAV
VANT
visão computacional
description This dissertation, 2-DOF Laser Structure for Autonomous External Quadrotor Guidance, has the goal of designing a novel method to attract an aerial robot to a ground vehicle using a system composed of a camera and a laser for autonomous landing. This applications is designed to be used alongside other guiding methods. This is a complex problem that requires work on different fields on both the ground and the aerial robot. On the ground station, know as Mirã, a structure was designed using 3D printed parts, and two stepper motor adjusted for 1:16 microstepping to precisely orient a camera and a laser with 2 DoF. The motor is controlled by a computer vision algorithm that uses four green LED on the aerial robot. With the combination of a light source filter and a color filter along with metric filters, the algorithm can find the LEDs position on the image. By estimating the distance of the center of the LED formation and the center of the image, the algorithm uses the camera calibration parameters to convert it to azimuth and elevation angles, allowing the structure to follow and target the laser on the aerial robot with a error of elevation = 4.96º and azimuth = 0.27º with a standard deviation of 1.03 and 0.51 degree. To call the aerial robot, the structure will perform a linear cut on the elevation motor, because of this, the azimuth precision is made much higher. On the aerial vehicle, using a 6 x 6 matrix of photodectors, a 0.5 x 0.5 m sensor was designed to be capable of estimating the position of the laser dot on the sensor at a rate of 200 Hz. The aerial robot will decode the sensor reading and acquire multiples instances of the readings, once possible, a linear approximation of the point collection is used to estimate a vector, the direction of the vector is estimated by looking at the older and newer points, resulting in a velocity vector which the aerial robot will follow. Once the vehicle is close enough, the structure will perform a cut in the opposite direction, commanding the aerial robot to stop and allowing for reliable autonomous landing.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18149/tde-12052020-175028/
url https://www.teses.usp.br/teses/disponiveis/18/18149/tde-12052020-175028/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256894365761536