Algoritmos para problemas de corte de guilhotina bidimensional
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-135851/ |
Resumo: | Muitas indústrias têm como desafio encontrar soluções mais econômicas possíveis para o problema de cortar objetos grandes visando a produção de objetos menores de dimensões especificadas, ou o problema de empacotar uma coleção de objetos pequenos dentro de objetos grandes. Tais problemas são chamados de problemas de corte de empacotamento e são, em geral, NP-difíceis. Em muitas aplicações, os objetos grandes (placas) e os objetos pequenos (itens) têm apenas duas dimensões relevantes e possuem a forma retangular. Além disso, é comum a restrição de que os cortes em cada objeto sejam de guilhotina, isto é, estes devem ser paralelos a um de seus lados e se estender desde um lado do objeto até o lado oposto, problemas desse tipo são chamados de problemas de corte de guilhotina bidimensional. Algoritmos para tais tipos de problemas constituem o tema central desta tese. Investigamos o problema de corte de estoque bidimensional com demandas (PCED IND. 2) (um caso mais geral em que os cortes não precisam ser de guilhotina) e introduzimos o conceito de padrões semi-homogêneos. Fazendo uso de tais padrões, desenvolvemos um algoritmo polinomial cuja razão de aproximação absoluta é 4, e mostramos que esta razão é justa. Ainda utilizando padrões semi-homogêneos, desenvolvemos um algoritmo que resolve uma variante do 'PCED IND. 2' na qual as placas e os itens são quadrados. Provamos que este algoritmo tem razão de aproximação assintótica entre 2,4166 e 2,6875. Até onde sabemos, estes são os primeiros algoritmos de aproximaçãopropostos para tais problemas. Desenvolvemos ainda um algoritmo para o problema de corte de estoque bidimensional binário com rotações e provamos que esse algoritmo possui razão de aproximação assintótica não maior que 4. Utilizando a fórmula de recorrência proposta por Beasley e os pontos de discretização definidos por Herz, desenvolvemos um algoritmo pseudo-polinomial para o problema de corte de ) de guilhotina bidimensional com valor (PCGV IND. 2) baseado em programação dinâmica. Chamamos tal algoritmo de 'PCGV IND. 2 PD'. Este algoritmo também resolve uma variante do 'PCGV IND. 2' na qual os itens podem sofrer rotações ortogonais. Apresentamos também um algoritmo baseado em enumeração explicíta e em programação dinâmica para calcular os pontos de discretização. Mostramos que, se os itens não são muito pequenos em relação ao tamanho das placas, então o algoritmo 'PCGV IND. 2 P-D' requer tempo polinomial. Implementamos o 'PCGV IND. 2 PD' e resolvemos todas as instâncias do 'PCGV IND. 2' encontradas na OR-LIBRARY. Destacamos que para uma destas instâncias (mencionada há duas décadas) não se conhecia uma solução ótima |
id |
USP_b6ff369a3fa1789a17ccaa1687ea6cd6 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-135851 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Algoritmos para problemas de corte de guilhotina bidimensionalnot availableProblemas Combinatórios ClássicosMuitas indústrias têm como desafio encontrar soluções mais econômicas possíveis para o problema de cortar objetos grandes visando a produção de objetos menores de dimensões especificadas, ou o problema de empacotar uma coleção de objetos pequenos dentro de objetos grandes. Tais problemas são chamados de problemas de corte de empacotamento e são, em geral, NP-difíceis. Em muitas aplicações, os objetos grandes (placas) e os objetos pequenos (itens) têm apenas duas dimensões relevantes e possuem a forma retangular. Além disso, é comum a restrição de que os cortes em cada objeto sejam de guilhotina, isto é, estes devem ser paralelos a um de seus lados e se estender desde um lado do objeto até o lado oposto, problemas desse tipo são chamados de problemas de corte de guilhotina bidimensional. Algoritmos para tais tipos de problemas constituem o tema central desta tese. Investigamos o problema de corte de estoque bidimensional com demandas (PCED IND. 2) (um caso mais geral em que os cortes não precisam ser de guilhotina) e introduzimos o conceito de padrões semi-homogêneos. Fazendo uso de tais padrões, desenvolvemos um algoritmo polinomial cuja razão de aproximação absoluta é 4, e mostramos que esta razão é justa. Ainda utilizando padrões semi-homogêneos, desenvolvemos um algoritmo que resolve uma variante do 'PCED IND. 2' na qual as placas e os itens são quadrados. Provamos que este algoritmo tem razão de aproximação assintótica entre 2,4166 e 2,6875. Até onde sabemos, estes são os primeiros algoritmos de aproximaçãopropostos para tais problemas. Desenvolvemos ainda um algoritmo para o problema de corte de estoque bidimensional binário com rotações e provamos que esse algoritmo possui razão de aproximação assintótica não maior que 4. Utilizando a fórmula de recorrência proposta por Beasley e os pontos de discretização definidos por Herz, desenvolvemos um algoritmo pseudo-polinomial para o problema de corte de ) de guilhotina bidimensional com valor (PCGV IND. 2) baseado em programação dinâmica. Chamamos tal algoritmo de 'PCGV IND. 2 PD'. Este algoritmo também resolve uma variante do 'PCGV IND. 2' na qual os itens podem sofrer rotações ortogonais. Apresentamos também um algoritmo baseado em enumeração explicíta e em programação dinâmica para calcular os pontos de discretização. Mostramos que, se os itens não são muito pequenos em relação ao tamanho das placas, então o algoritmo 'PCGV IND. 2 P-D' requer tempo polinomial. Implementamos o 'PCGV IND. 2 PD' e resolvemos todas as instâncias do 'PCGV IND. 2' encontradas na OR-LIBRARY. Destacamos que para uma destas instâncias (mencionada há duas décadas) não se conhecia uma solução ótimanot availableBiblioteca Digitais de Teses e Dissertações da USPWakabayashi, YoshikoCintra, Glauber Ferreira2004-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-135851/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:11:05Zoai:teses.usp.br:tde-20210729-135851Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:11:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Algoritmos para problemas de corte de guilhotina bidimensional not available |
title |
Algoritmos para problemas de corte de guilhotina bidimensional |
spellingShingle |
Algoritmos para problemas de corte de guilhotina bidimensional Cintra, Glauber Ferreira Problemas Combinatórios Clássicos |
title_short |
Algoritmos para problemas de corte de guilhotina bidimensional |
title_full |
Algoritmos para problemas de corte de guilhotina bidimensional |
title_fullStr |
Algoritmos para problemas de corte de guilhotina bidimensional |
title_full_unstemmed |
Algoritmos para problemas de corte de guilhotina bidimensional |
title_sort |
Algoritmos para problemas de corte de guilhotina bidimensional |
author |
Cintra, Glauber Ferreira |
author_facet |
Cintra, Glauber Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Wakabayashi, Yoshiko |
dc.contributor.author.fl_str_mv |
Cintra, Glauber Ferreira |
dc.subject.por.fl_str_mv |
Problemas Combinatórios Clássicos |
topic |
Problemas Combinatórios Clássicos |
description |
Muitas indústrias têm como desafio encontrar soluções mais econômicas possíveis para o problema de cortar objetos grandes visando a produção de objetos menores de dimensões especificadas, ou o problema de empacotar uma coleção de objetos pequenos dentro de objetos grandes. Tais problemas são chamados de problemas de corte de empacotamento e são, em geral, NP-difíceis. Em muitas aplicações, os objetos grandes (placas) e os objetos pequenos (itens) têm apenas duas dimensões relevantes e possuem a forma retangular. Além disso, é comum a restrição de que os cortes em cada objeto sejam de guilhotina, isto é, estes devem ser paralelos a um de seus lados e se estender desde um lado do objeto até o lado oposto, problemas desse tipo são chamados de problemas de corte de guilhotina bidimensional. Algoritmos para tais tipos de problemas constituem o tema central desta tese. Investigamos o problema de corte de estoque bidimensional com demandas (PCED IND. 2) (um caso mais geral em que os cortes não precisam ser de guilhotina) e introduzimos o conceito de padrões semi-homogêneos. Fazendo uso de tais padrões, desenvolvemos um algoritmo polinomial cuja razão de aproximação absoluta é 4, e mostramos que esta razão é justa. Ainda utilizando padrões semi-homogêneos, desenvolvemos um algoritmo que resolve uma variante do 'PCED IND. 2' na qual as placas e os itens são quadrados. Provamos que este algoritmo tem razão de aproximação assintótica entre 2,4166 e 2,6875. Até onde sabemos, estes são os primeiros algoritmos de aproximaçãopropostos para tais problemas. Desenvolvemos ainda um algoritmo para o problema de corte de estoque bidimensional binário com rotações e provamos que esse algoritmo possui razão de aproximação assintótica não maior que 4. Utilizando a fórmula de recorrência proposta por Beasley e os pontos de discretização definidos por Herz, desenvolvemos um algoritmo pseudo-polinomial para o problema de corte de ) de guilhotina bidimensional com valor (PCGV IND. 2) baseado em programação dinâmica. Chamamos tal algoritmo de 'PCGV IND. 2 PD'. Este algoritmo também resolve uma variante do 'PCGV IND. 2' na qual os itens podem sofrer rotações ortogonais. Apresentamos também um algoritmo baseado em enumeração explicíta e em programação dinâmica para calcular os pontos de discretização. Mostramos que, se os itens não são muito pequenos em relação ao tamanho das placas, então o algoritmo 'PCGV IND. 2 P-D' requer tempo polinomial. Implementamos o 'PCGV IND. 2 PD' e resolvemos todas as instâncias do 'PCGV IND. 2' encontradas na OR-LIBRARY. Destacamos que para uma destas instâncias (mencionada há duas décadas) não se conhecia uma solução ótima |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-04-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-135851/ |
url |
https://teses.usp.br/teses/disponiveis/45/45134/tde-20210729-135851/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257209235308544 |