Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/3/3142/tde-17082010-131206/ |
Resumo: | O presente trabalho possui como metas o estudo, simulação, identificação de parâmetros e comparação estatística de modelos compartimentais utilizados em tomografia por emissão de pósitrons (PET). Para tanto, propõe-se utilizar a metodologia de equações de sensibilidade e o método de Levenberg-Marquardt para a tarefa de estimação de parâmetros característicos das equações diferenciais descritoras dos referidos sistemas. Para comparação entre modelos, foi empregado o critério de informação de Akaike. São consideradas três estruturas compartimentais compostas, respectivamente, por dois compartimentos e duas constantes características, três compartimentos e quatro constantes características e quatro compartimentos e seis constantes características. Os dados considerados neste texto foram sintetizados preocupando-se em reunir as principais características de um exame de tomografia real, tais como tipo e nível de ruído e morfologia de função de excitação do sistema. Para tanto, foram utilizados exames de pacientes do setor de Medicina Nuclear do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Aplicando-se a metodologia proposta em três níveis de ruído (baixo, médio e alto), obteve-se concordância do melhor modelo em graus forte e considerável (com índices de Kappa iguais a 0.95, 0.93 e 0.63, respectivamente). Observou-se que, com elevado nível de ruído e modelos mais complexos (quatro compartimentos), a classificação se deteriora devido ao pequeno número de dados para a decisão. Foram desenvolvidos programas e uma interface gráfica que podem ser utilizadas na investigação, elaboração, simulação e identificação de parâmetros de modelos compartimentais para apoio e análise de diagnósticos clínicos e práticas científicas. |
id |
USP_b91ff96b84beab93d6497b3c9849091b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17082010-131206 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons.Parameter estimation of compartmental models for positron emission tomography.Compartmental modelingDifferential equations systemsEquações de sensibilidadeEstimação paramétricaModelos compartimentaisNonlinear optimizationOtimização não-linearParametric estimationSensitivity equationsSistemas de equações diferenciaisO presente trabalho possui como metas o estudo, simulação, identificação de parâmetros e comparação estatística de modelos compartimentais utilizados em tomografia por emissão de pósitrons (PET). Para tanto, propõe-se utilizar a metodologia de equações de sensibilidade e o método de Levenberg-Marquardt para a tarefa de estimação de parâmetros característicos das equações diferenciais descritoras dos referidos sistemas. Para comparação entre modelos, foi empregado o critério de informação de Akaike. São consideradas três estruturas compartimentais compostas, respectivamente, por dois compartimentos e duas constantes características, três compartimentos e quatro constantes características e quatro compartimentos e seis constantes características. Os dados considerados neste texto foram sintetizados preocupando-se em reunir as principais características de um exame de tomografia real, tais como tipo e nível de ruído e morfologia de função de excitação do sistema. Para tanto, foram utilizados exames de pacientes do setor de Medicina Nuclear do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Aplicando-se a metodologia proposta em três níveis de ruído (baixo, médio e alto), obteve-se concordância do melhor modelo em graus forte e considerável (com índices de Kappa iguais a 0.95, 0.93 e 0.63, respectivamente). Observou-se que, com elevado nível de ruído e modelos mais complexos (quatro compartimentos), a classificação se deteriora devido ao pequeno número de dados para a decisão. Foram desenvolvidos programas e uma interface gráfica que podem ser utilizadas na investigação, elaboração, simulação e identificação de parâmetros de modelos compartimentais para apoio e análise de diagnósticos clínicos e práticas científicas.This work has as goals the study, simulation, parameter identification and statistical comparison of compartmental models used in positron emission tomography (PET). We propose to use the methodology of sensitivity equations and the method of Levenberg-Marquardt for the task of estimating the characteristic parameters of the differential equations describing such systems. For model comparison, Akaikes information criterion is applied. We have considered three compartmental structures represented, respectively, by two compartments and two characteristic constants, three compartments and four characteristic constants and four compartments and six characteristics constants. The data considered in this work were synthesized taking into account key features of a real tomography exam, such as type and level of noise and morphology of the input function of the system. To this end, we used tests of patients in the sector of Nuclear Medicine of the Heart Institute of the Faculty of Medicine, University of São Paulo. Applying the proposed methodology with three noise levels (low, medium and high), we obtained agreement of the best model with strong and considerable degrees (with Kappa indexes equal to 0.95, 0.93 and 0.63, respectively). It was observed that, with high noise level and more complex models (four compartments), the classification is deteriorated due to lack of data for the decision. Programs have been developed and a graphical interface that can be used in research, development, simulation and parameter identification of compartmental models, supporting analysis of clinical diagnostics and scientific practices.Biblioteca Digitais de Teses e Dissertações da USPFuruie, Sérgio ShiguemiSilva, João Eduardo Maeda Moreira da2010-04-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-17082010-131206/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:09Zoai:teses.usp.br:tde-17082010-131206Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. Parameter estimation of compartmental models for positron emission tomography. |
title |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. |
spellingShingle |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. Silva, João Eduardo Maeda Moreira da Compartmental modeling Differential equations systems Equações de sensibilidade Estimação paramétrica Modelos compartimentais Nonlinear optimization Otimização não-linear Parametric estimation Sensitivity equations Sistemas de equações diferenciais |
title_short |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. |
title_full |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. |
title_fullStr |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. |
title_full_unstemmed |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. |
title_sort |
Estimação de parâmetros de modelos compartimentais para tomografia por emissão de pósitrons. |
author |
Silva, João Eduardo Maeda Moreira da |
author_facet |
Silva, João Eduardo Maeda Moreira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Furuie, Sérgio Shiguemi |
dc.contributor.author.fl_str_mv |
Silva, João Eduardo Maeda Moreira da |
dc.subject.por.fl_str_mv |
Compartmental modeling Differential equations systems Equações de sensibilidade Estimação paramétrica Modelos compartimentais Nonlinear optimization Otimização não-linear Parametric estimation Sensitivity equations Sistemas de equações diferenciais |
topic |
Compartmental modeling Differential equations systems Equações de sensibilidade Estimação paramétrica Modelos compartimentais Nonlinear optimization Otimização não-linear Parametric estimation Sensitivity equations Sistemas de equações diferenciais |
description |
O presente trabalho possui como metas o estudo, simulação, identificação de parâmetros e comparação estatística de modelos compartimentais utilizados em tomografia por emissão de pósitrons (PET). Para tanto, propõe-se utilizar a metodologia de equações de sensibilidade e o método de Levenberg-Marquardt para a tarefa de estimação de parâmetros característicos das equações diferenciais descritoras dos referidos sistemas. Para comparação entre modelos, foi empregado o critério de informação de Akaike. São consideradas três estruturas compartimentais compostas, respectivamente, por dois compartimentos e duas constantes características, três compartimentos e quatro constantes características e quatro compartimentos e seis constantes características. Os dados considerados neste texto foram sintetizados preocupando-se em reunir as principais características de um exame de tomografia real, tais como tipo e nível de ruído e morfologia de função de excitação do sistema. Para tanto, foram utilizados exames de pacientes do setor de Medicina Nuclear do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Aplicando-se a metodologia proposta em três níveis de ruído (baixo, médio e alto), obteve-se concordância do melhor modelo em graus forte e considerável (com índices de Kappa iguais a 0.95, 0.93 e 0.63, respectivamente). Observou-se que, com elevado nível de ruído e modelos mais complexos (quatro compartimentos), a classificação se deteriora devido ao pequeno número de dados para a decisão. Foram desenvolvidos programas e uma interface gráfica que podem ser utilizadas na investigação, elaboração, simulação e identificação de parâmetros de modelos compartimentais para apoio e análise de diagnósticos clínicos e práticas científicas. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3142/tde-17082010-131206/ |
url |
http://www.teses.usp.br/teses/disponiveis/3/3142/tde-17082010-131206/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257044997898240 |