Modelos lineares generalizados mistos para dados longitudinais.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052003-164143/ |
Resumo: | Experimentos cujas variaveis respostas s~ ao proporcoes ou contagens, sao muito comuns nas diversas areas do conhecimento, principalmente na area agricola. Na analise desses experimentos, utiliza-se a teoria de modelos lineares generalizados, bastante difundida (McCullagh & Nelder, 1989; Demetrio, 2001), em que as respostas sao independentes. Caso a variancia estimada seja maior do que a esperada, estima-se o parametro de dispersao, incluindo-o no processo de estimaçao dos parametros. Quando a variavel resposta e observada ao longo do tempo, pode haver uma correlacao entre as observacoes e isso tem que ser levado em consideracao na estimacao dos parametros. Uma forma de se trabalhar essa correlacao e aplicando a metodologia de equacoes de estimacao generalizada (EEG), discutida por Liang & Zeger (1986), embora, neste caso, o interesse esteja nas estimativas dos efeitos fixos e a inclusao da matriz de correlacao de trabalho sirva para se obter um melhor ajuste. Uma outra alternativa e a inclusao, no preditor linear, de um efeito latente para captar variabilidades nao consideradas no modelo e que podem in uenciar nos resultados. No presente trabalho, usa-se uma forma combinada de efeito aleatorio e parametro de dispersao, incluidos conjuntamente na estimacao dos parametros. Essa metodologia e aplicada a um conjunto de dados obtidos de um experimento com camu-camu, com objetivo de se avaliarem quais os melhores metodos de enxertia e tipos de porta-enxertos que podem ser utilizados, atraves da proporcao de pegamentos da muda. Varios modelos sao ajustados, desde o modelo em parcelas subdivididas (supondo independencia), ate o modelo em que se considera o parametro de dispersao e efeito aleatorio conjuntamente. Ha evidencias de que o modelo em que se inclui o efeito aleatorio e o parametro de dispersao, conjuntamente, resultam em melhores estimativas dos parametros. Outro conjunto de dados longitudinais, com milho transgenico MON810, em que a variavel resposta e o numero de lagartas (Spodoptera frugiperda), e utilizado. Neste caso, devido ao excesso de respostas zero, emprega-se o modelo de regressao Poisson in acionado de zeros (ZIP), alem do modelo Poisson padrao, em que as observacoes sao consideradas independentes, e do modelo Poisson in acionado de zeros com efeito aleatorio. Os resultados mostram que o efeito aleatorio incluido no preditor foi nao significativo e, assim, o modelo adotado e o modelo de regressao Poisson in acionado de zeros. Os resultados foram obtidos usando-se os procedimentos NLMIXED, GENMOD e GPLOT do SAS - Statistical Analysis System, versao 8.2. |
id |
USP_b9b07a9dbe115b3cdf4a43c076c21c68 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09052003-164143 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos lineares generalizados mistos para dados longitudinais.Generalized linear mixed models in longitudinal data.análise de dados longitudinaisbinomial distributiondistribuição binomialdistribuição de poissonem algorithmgeneralized linear mixed modelsgeneralized linear modelsmodelos lineares generalizadospoisson distributionSAS (programa de computador)Experimentos cujas variaveis respostas s~ ao proporcoes ou contagens, sao muito comuns nas diversas areas do conhecimento, principalmente na area agricola. Na analise desses experimentos, utiliza-se a teoria de modelos lineares generalizados, bastante difundida (McCullagh & Nelder, 1989; Demetrio, 2001), em que as respostas sao independentes. Caso a variancia estimada seja maior do que a esperada, estima-se o parametro de dispersao, incluindo-o no processo de estimaçao dos parametros. Quando a variavel resposta e observada ao longo do tempo, pode haver uma correlacao entre as observacoes e isso tem que ser levado em consideracao na estimacao dos parametros. Uma forma de se trabalhar essa correlacao e aplicando a metodologia de equacoes de estimacao generalizada (EEG), discutida por Liang & Zeger (1986), embora, neste caso, o interesse esteja nas estimativas dos efeitos fixos e a inclusao da matriz de correlacao de trabalho sirva para se obter um melhor ajuste. Uma outra alternativa e a inclusao, no preditor linear, de um efeito latente para captar variabilidades nao consideradas no modelo e que podem in uenciar nos resultados. No presente trabalho, usa-se uma forma combinada de efeito aleatorio e parametro de dispersao, incluidos conjuntamente na estimacao dos parametros. Essa metodologia e aplicada a um conjunto de dados obtidos de um experimento com camu-camu, com objetivo de se avaliarem quais os melhores metodos de enxertia e tipos de porta-enxertos que podem ser utilizados, atraves da proporcao de pegamentos da muda. Varios modelos sao ajustados, desde o modelo em parcelas subdivididas (supondo independencia), ate o modelo em que se considera o parametro de dispersao e efeito aleatorio conjuntamente. Ha evidencias de que o modelo em que se inclui o efeito aleatorio e o parametro de dispersao, conjuntamente, resultam em melhores estimativas dos parametros. Outro conjunto de dados longitudinais, com milho transgenico MON810, em que a variavel resposta e o numero de lagartas (Spodoptera frugiperda), e utilizado. Neste caso, devido ao excesso de respostas zero, emprega-se o modelo de regressao Poisson in acionado de zeros (ZIP), alem do modelo Poisson padrao, em que as observacoes sao consideradas independentes, e do modelo Poisson in acionado de zeros com efeito aleatorio. Os resultados mostram que o efeito aleatorio incluido no preditor foi nao significativo e, assim, o modelo adotado e o modelo de regressao Poisson in acionado de zeros. Os resultados foram obtidos usando-se os procedimentos NLMIXED, GENMOD e GPLOT do SAS - Statistical Analysis System, versao 8.2.Experiments which response variables are proportions or counts are very common in several research areas, specially in the area of agriculture. The theory of generalized linear models, well difused (McCullagh & Nelder, 1989; Demetrio, 2001), is used for analyzing these experiments where the responses are independent. If the estimated variance is greater than the expected variance, the dispersion parameter is estimated including it on the parameter estimation process. When the response variable is observed over time a correlation among observations might occur and it should be taken into account in the parameter estimation. A way of dealing with this correlation is applying the methodology of generalized estimating equations (GEEs) discussed by Liang & Zeger (1986) although, in this case, the interest is on the estimates of the xed efect being the inclusion of a working correlation matrix useful to obtain more accurate estimates. Another alternative is the inclusion of a latent efect in the linear predictor to explain variabilities not considered in the model that might in uence the results. In this work the random efect and the dispersion parameter are combined and included together in the parameter estimation. Such methodology is applied to a data set obtained from an experiment realized with camu-camu to evaluate, through proportion of grafting well successful of seedling, which kind of grafting and understock are suitable to be used. Several models are fitted, since the split plot model (with independence assumption) up to the model where the dispersion parameter and the random efect are considered together. There is evidence that the model including the random efect and the dispersion parameter together, produce better estimates of the parameters. Another longitudinal data set used here comes from an experiment realized with the MON810 transgenic corn where the response variable is the number of caterpillars (Spodoptera frugiperda). In this case, due to the excessive number of zeros obtained, the zero in ated Poisson regression model (ZIP) is used in addition to the standard Poisson model, where observations are considered independent, and the zero in ated Poisson regression model with random efect. The results show that the random efect included in the linear predictor was not significant and, therefore, the adopted model is the zero in ated Poisson regression model. The results were obtained using the procedures NLMIXED, GENMOD and GPLOT available on SAS - Statistical Analysis System, version 8.2.Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesCosta, Silvano Cesar da2003-03-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052003-164143/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-09052003-164143Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos lineares generalizados mistos para dados longitudinais. Generalized linear mixed models in longitudinal data. |
title |
Modelos lineares generalizados mistos para dados longitudinais. |
spellingShingle |
Modelos lineares generalizados mistos para dados longitudinais. Costa, Silvano Cesar da análise de dados longitudinais binomial distribution distribuição binomial distribuição de poisson em algorithm generalized linear mixed models generalized linear models modelos lineares generalizados poisson distribution SAS (programa de computador) |
title_short |
Modelos lineares generalizados mistos para dados longitudinais. |
title_full |
Modelos lineares generalizados mistos para dados longitudinais. |
title_fullStr |
Modelos lineares generalizados mistos para dados longitudinais. |
title_full_unstemmed |
Modelos lineares generalizados mistos para dados longitudinais. |
title_sort |
Modelos lineares generalizados mistos para dados longitudinais. |
author |
Costa, Silvano Cesar da |
author_facet |
Costa, Silvano Cesar da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Demetrio, Clarice Garcia Borges |
dc.contributor.author.fl_str_mv |
Costa, Silvano Cesar da |
dc.subject.por.fl_str_mv |
análise de dados longitudinais binomial distribution distribuição binomial distribuição de poisson em algorithm generalized linear mixed models generalized linear models modelos lineares generalizados poisson distribution SAS (programa de computador) |
topic |
análise de dados longitudinais binomial distribution distribuição binomial distribuição de poisson em algorithm generalized linear mixed models generalized linear models modelos lineares generalizados poisson distribution SAS (programa de computador) |
description |
Experimentos cujas variaveis respostas s~ ao proporcoes ou contagens, sao muito comuns nas diversas areas do conhecimento, principalmente na area agricola. Na analise desses experimentos, utiliza-se a teoria de modelos lineares generalizados, bastante difundida (McCullagh & Nelder, 1989; Demetrio, 2001), em que as respostas sao independentes. Caso a variancia estimada seja maior do que a esperada, estima-se o parametro de dispersao, incluindo-o no processo de estimaçao dos parametros. Quando a variavel resposta e observada ao longo do tempo, pode haver uma correlacao entre as observacoes e isso tem que ser levado em consideracao na estimacao dos parametros. Uma forma de se trabalhar essa correlacao e aplicando a metodologia de equacoes de estimacao generalizada (EEG), discutida por Liang & Zeger (1986), embora, neste caso, o interesse esteja nas estimativas dos efeitos fixos e a inclusao da matriz de correlacao de trabalho sirva para se obter um melhor ajuste. Uma outra alternativa e a inclusao, no preditor linear, de um efeito latente para captar variabilidades nao consideradas no modelo e que podem in uenciar nos resultados. No presente trabalho, usa-se uma forma combinada de efeito aleatorio e parametro de dispersao, incluidos conjuntamente na estimacao dos parametros. Essa metodologia e aplicada a um conjunto de dados obtidos de um experimento com camu-camu, com objetivo de se avaliarem quais os melhores metodos de enxertia e tipos de porta-enxertos que podem ser utilizados, atraves da proporcao de pegamentos da muda. Varios modelos sao ajustados, desde o modelo em parcelas subdivididas (supondo independencia), ate o modelo em que se considera o parametro de dispersao e efeito aleatorio conjuntamente. Ha evidencias de que o modelo em que se inclui o efeito aleatorio e o parametro de dispersao, conjuntamente, resultam em melhores estimativas dos parametros. Outro conjunto de dados longitudinais, com milho transgenico MON810, em que a variavel resposta e o numero de lagartas (Spodoptera frugiperda), e utilizado. Neste caso, devido ao excesso de respostas zero, emprega-se o modelo de regressao Poisson in acionado de zeros (ZIP), alem do modelo Poisson padrao, em que as observacoes sao consideradas independentes, e do modelo Poisson in acionado de zeros com efeito aleatorio. Os resultados mostram que o efeito aleatorio incluido no preditor foi nao significativo e, assim, o modelo adotado e o modelo de regressao Poisson in acionado de zeros. Os resultados foram obtidos usando-se os procedimentos NLMIXED, GENMOD e GPLOT do SAS - Statistical Analysis System, versao 8.2. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-03-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052003-164143/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052003-164143/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1809090545603051520 |