Using complex networks and Deep Learning to model and learn context
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/ |
Resumo: | The structure of language is strongly influenced by the context, whether it is the social setting, of discourse (spoken and written) or the context of words itself. This fact allowed the creation of several techniques of Natural Language Processing (NLP) that take advantage of this information to tackle a myriad of tasks, including machine translation, summarization and classification of texts. However, in most of these applications, the context has been approached only as a source of information and not as an element to be explored and modeled. In this thesis, we explore the context on a deeper level, bringing new representations and methodologies. Throughout the thesis, we considered context as an important element that must be modeled in order to better perform NLP tasks. We demonstrated how complex networks can be used both to represent and learn context information while performing word sense disambiguation. In addition, we proposed a context modeling approach that combines word embeddings and a network representation, this approach allowed the induction of senses in an unsupervised way using community detection methods. Using this representation we further explored its application in text classification, we expanded the approach to allow the extraction of text features based on the semantic flow, which were later used in a supervised classifier trained to discriminate texts by genre and publication date. The studies carried out in this thesis demonstrate that context modeling is important given the interdependence between language and context, and that it can bring benefits for different NLP tasks. The framework proposed, both for modeling and textual feature extraction can be further used to explore other aspects and mechanisms of language. |
id |
USP_ba35fe3ad64e59c8f19da66df8eb1594 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-16022021-151616 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Using complex networks and Deep Learning to model and learn contextModelagem e aprendizado de contexto usando redes complexas e Deep LearningAmbiguidadeAmbiguityComplex networksContextContextoDeep learningDeep learningRedes complexasThe structure of language is strongly influenced by the context, whether it is the social setting, of discourse (spoken and written) or the context of words itself. This fact allowed the creation of several techniques of Natural Language Processing (NLP) that take advantage of this information to tackle a myriad of tasks, including machine translation, summarization and classification of texts. However, in most of these applications, the context has been approached only as a source of information and not as an element to be explored and modeled. In this thesis, we explore the context on a deeper level, bringing new representations and methodologies. Throughout the thesis, we considered context as an important element that must be modeled in order to better perform NLP tasks. We demonstrated how complex networks can be used both to represent and learn context information while performing word sense disambiguation. In addition, we proposed a context modeling approach that combines word embeddings and a network representation, this approach allowed the induction of senses in an unsupervised way using community detection methods. Using this representation we further explored its application in text classification, we expanded the approach to allow the extraction of text features based on the semantic flow, which were later used in a supervised classifier trained to discriminate texts by genre and publication date. The studies carried out in this thesis demonstrate that context modeling is important given the interdependence between language and context, and that it can bring benefits for different NLP tasks. The framework proposed, both for modeling and textual feature extraction can be further used to explore other aspects and mechanisms of language.A estrutura da língua é fortemente influenciada pelo contexto, seja ele social, do discurso (falado e escrito) ou o próprio contexto de palavras. Este preceito propiciou a criação de várias técnicas de Processamento de Língua Natural (PLN) que tiram vantagem dessa informação para realizar uma miríade de tarefas, incluindo tradução automática, sumarização e classificação de textos. Entretanto, em grande parte dessas aplicações o contexto tem sido abordado apenas como uma informação de entrada e não como um elemento a ser explorado e modelado. Nesta tese, exploramos o contexto em um nível mais profundo, trazendo novas representações e metodologias. Ao longo da tese, consideramos o contexto como um elemento importante que deve ser modelado para melhor desempenhar as tarefas da PLN. Demonstramos como redes complexas podem ser usadas para representar e aprender informações de contexto durante a desambiguação do sentido das palavras. Além disso, propusemos uma abordagem de modelagem de contexto que combina word embeddings e uma representação de rede, esta abordagem permitiu a indução de sentidos de uma forma não supervisionada usando métodos de detecção de comunidade. Usando essa representação exploramos sua aplicação na classificação de textos, expandimos a abordagem para permitir a extração de características de texto com base no fluxo semântico, que foram posteriormente usadas em um classificador supervisionado treinado para discriminar textos por gênero e data de publicação. Os estudos realizados nesta tese demonstram que a modelagem de contexto é importante dada a interdependência entre linguagem e contexto, e que pode trazer benefícios para diferentes tarefas de PLN. O framework proposto, tanto para modelagem quanto para extração de características textuais, pode ser posteriormente utilizado para explorar outros aspectos e mecanismos da linguagem.Biblioteca Digitais de Teses e Dissertações da USPAmancio, Diego RaphaelJúnior, Edilson Anselmo Corrêa2020-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-02-16T20:23:02Zoai:teses.usp.br:tde-16022021-151616Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-16T20:23:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Using complex networks and Deep Learning to model and learn context Modelagem e aprendizado de contexto usando redes complexas e Deep Learning |
title |
Using complex networks and Deep Learning to model and learn context |
spellingShingle |
Using complex networks and Deep Learning to model and learn context Júnior, Edilson Anselmo Corrêa Ambiguidade Ambiguity Complex networks Context Contexto Deep learning Deep learning Redes complexas |
title_short |
Using complex networks and Deep Learning to model and learn context |
title_full |
Using complex networks and Deep Learning to model and learn context |
title_fullStr |
Using complex networks and Deep Learning to model and learn context |
title_full_unstemmed |
Using complex networks and Deep Learning to model and learn context |
title_sort |
Using complex networks and Deep Learning to model and learn context |
author |
Júnior, Edilson Anselmo Corrêa |
author_facet |
Júnior, Edilson Anselmo Corrêa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Amancio, Diego Raphael |
dc.contributor.author.fl_str_mv |
Júnior, Edilson Anselmo Corrêa |
dc.subject.por.fl_str_mv |
Ambiguidade Ambiguity Complex networks Context Contexto Deep learning Deep learning Redes complexas |
topic |
Ambiguidade Ambiguity Complex networks Context Contexto Deep learning Deep learning Redes complexas |
description |
The structure of language is strongly influenced by the context, whether it is the social setting, of discourse (spoken and written) or the context of words itself. This fact allowed the creation of several techniques of Natural Language Processing (NLP) that take advantage of this information to tackle a myriad of tasks, including machine translation, summarization and classification of texts. However, in most of these applications, the context has been approached only as a source of information and not as an element to be explored and modeled. In this thesis, we explore the context on a deeper level, bringing new representations and methodologies. Throughout the thesis, we considered context as an important element that must be modeled in order to better perform NLP tasks. We demonstrated how complex networks can be used both to represent and learn context information while performing word sense disambiguation. In addition, we proposed a context modeling approach that combines word embeddings and a network representation, this approach allowed the induction of senses in an unsupervised way using community detection methods. Using this representation we further explored its application in text classification, we expanded the approach to allow the extraction of text features based on the semantic flow, which were later used in a supervised classifier trained to discriminate texts by genre and publication date. The studies carried out in this thesis demonstrate that context modeling is important given the interdependence between language and context, and that it can bring benefits for different NLP tasks. The framework proposed, both for modeling and textual feature extraction can be further used to explore other aspects and mechanisms of language. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257013870919680 |