Using complex networks and Deep Learning to model and learn context

Detalhes bibliográficos
Autor(a) principal: Júnior, Edilson Anselmo Corrêa
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/
Resumo: The structure of language is strongly influenced by the context, whether it is the social setting, of discourse (spoken and written) or the context of words itself. This fact allowed the creation of several techniques of Natural Language Processing (NLP) that take advantage of this information to tackle a myriad of tasks, including machine translation, summarization and classification of texts. However, in most of these applications, the context has been approached only as a source of information and not as an element to be explored and modeled. In this thesis, we explore the context on a deeper level, bringing new representations and methodologies. Throughout the thesis, we considered context as an important element that must be modeled in order to better perform NLP tasks. We demonstrated how complex networks can be used both to represent and learn context information while performing word sense disambiguation. In addition, we proposed a context modeling approach that combines word embeddings and a network representation, this approach allowed the induction of senses in an unsupervised way using community detection methods. Using this representation we further explored its application in text classification, we expanded the approach to allow the extraction of text features based on the semantic flow, which were later used in a supervised classifier trained to discriminate texts by genre and publication date. The studies carried out in this thesis demonstrate that context modeling is important given the interdependence between language and context, and that it can bring benefits for different NLP tasks. The framework proposed, both for modeling and textual feature extraction can be further used to explore other aspects and mechanisms of language.
id USP_ba35fe3ad64e59c8f19da66df8eb1594
oai_identifier_str oai:teses.usp.br:tde-16022021-151616
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Using complex networks and Deep Learning to model and learn contextModelagem e aprendizado de contexto usando redes complexas e Deep LearningAmbiguidadeAmbiguityComplex networksContextContextoDeep learningDeep learningRedes complexasThe structure of language is strongly influenced by the context, whether it is the social setting, of discourse (spoken and written) or the context of words itself. This fact allowed the creation of several techniques of Natural Language Processing (NLP) that take advantage of this information to tackle a myriad of tasks, including machine translation, summarization and classification of texts. However, in most of these applications, the context has been approached only as a source of information and not as an element to be explored and modeled. In this thesis, we explore the context on a deeper level, bringing new representations and methodologies. Throughout the thesis, we considered context as an important element that must be modeled in order to better perform NLP tasks. We demonstrated how complex networks can be used both to represent and learn context information while performing word sense disambiguation. In addition, we proposed a context modeling approach that combines word embeddings and a network representation, this approach allowed the induction of senses in an unsupervised way using community detection methods. Using this representation we further explored its application in text classification, we expanded the approach to allow the extraction of text features based on the semantic flow, which were later used in a supervised classifier trained to discriminate texts by genre and publication date. The studies carried out in this thesis demonstrate that context modeling is important given the interdependence between language and context, and that it can bring benefits for different NLP tasks. The framework proposed, both for modeling and textual feature extraction can be further used to explore other aspects and mechanisms of language.A estrutura da língua é fortemente influenciada pelo contexto, seja ele social, do discurso (falado e escrito) ou o próprio contexto de palavras. Este preceito propiciou a criação de várias técnicas de Processamento de Língua Natural (PLN) que tiram vantagem dessa informação para realizar uma miríade de tarefas, incluindo tradução automática, sumarização e classificação de textos. Entretanto, em grande parte dessas aplicações o contexto tem sido abordado apenas como uma informação de entrada e não como um elemento a ser explorado e modelado. Nesta tese, exploramos o contexto em um nível mais profundo, trazendo novas representações e metodologias. Ao longo da tese, consideramos o contexto como um elemento importante que deve ser modelado para melhor desempenhar as tarefas da PLN. Demonstramos como redes complexas podem ser usadas para representar e aprender informações de contexto durante a desambiguação do sentido das palavras. Além disso, propusemos uma abordagem de modelagem de contexto que combina word embeddings e uma representação de rede, esta abordagem permitiu a indução de sentidos de uma forma não supervisionada usando métodos de detecção de comunidade. Usando essa representação exploramos sua aplicação na classificação de textos, expandimos a abordagem para permitir a extração de características de texto com base no fluxo semântico, que foram posteriormente usadas em um classificador supervisionado treinado para discriminar textos por gênero e data de publicação. Os estudos realizados nesta tese demonstram que a modelagem de contexto é importante dada a interdependência entre linguagem e contexto, e que pode trazer benefícios para diferentes tarefas de PLN. O framework proposto, tanto para modelagem quanto para extração de características textuais, pode ser posteriormente utilizado para explorar outros aspectos e mecanismos da linguagem.Biblioteca Digitais de Teses e Dissertações da USPAmancio, Diego RaphaelJúnior, Edilson Anselmo Corrêa2020-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-02-16T20:23:02Zoai:teses.usp.br:tde-16022021-151616Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-02-16T20:23:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Using complex networks and Deep Learning to model and learn context
Modelagem e aprendizado de contexto usando redes complexas e Deep Learning
title Using complex networks and Deep Learning to model and learn context
spellingShingle Using complex networks and Deep Learning to model and learn context
Júnior, Edilson Anselmo Corrêa
Ambiguidade
Ambiguity
Complex networks
Context
Contexto
Deep learning
Deep learning
Redes complexas
title_short Using complex networks and Deep Learning to model and learn context
title_full Using complex networks and Deep Learning to model and learn context
title_fullStr Using complex networks and Deep Learning to model and learn context
title_full_unstemmed Using complex networks and Deep Learning to model and learn context
title_sort Using complex networks and Deep Learning to model and learn context
author Júnior, Edilson Anselmo Corrêa
author_facet Júnior, Edilson Anselmo Corrêa
author_role author
dc.contributor.none.fl_str_mv Amancio, Diego Raphael
dc.contributor.author.fl_str_mv Júnior, Edilson Anselmo Corrêa
dc.subject.por.fl_str_mv Ambiguidade
Ambiguity
Complex networks
Context
Contexto
Deep learning
Deep learning
Redes complexas
topic Ambiguidade
Ambiguity
Complex networks
Context
Contexto
Deep learning
Deep learning
Redes complexas
description The structure of language is strongly influenced by the context, whether it is the social setting, of discourse (spoken and written) or the context of words itself. This fact allowed the creation of several techniques of Natural Language Processing (NLP) that take advantage of this information to tackle a myriad of tasks, including machine translation, summarization and classification of texts. However, in most of these applications, the context has been approached only as a source of information and not as an element to be explored and modeled. In this thesis, we explore the context on a deeper level, bringing new representations and methodologies. Throughout the thesis, we considered context as an important element that must be modeled in order to better perform NLP tasks. We demonstrated how complex networks can be used both to represent and learn context information while performing word sense disambiguation. In addition, we proposed a context modeling approach that combines word embeddings and a network representation, this approach allowed the induction of senses in an unsupervised way using community detection methods. Using this representation we further explored its application in text classification, we expanded the approach to allow the extraction of text features based on the semantic flow, which were later used in a supervised classifier trained to discriminate texts by genre and publication date. The studies carried out in this thesis demonstrate that context modeling is important given the interdependence between language and context, and that it can bring benefits for different NLP tasks. The framework proposed, both for modeling and textual feature extraction can be further used to explore other aspects and mechanisms of language.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-16022021-151616/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257013870919680