Singularidades de curvas na geometria afim

Detalhes bibliográficos
Autor(a) principal: Sanchez, Luis Florial Espinoza
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/
Resumo: Neste trabalho estudamos a geometria da evoluta afim e da curva normal afim associada à uma curva plana sem inflexões a partir do tipo de singularidade das funções suporte afim. O principal resultado estabelece que se \'\\gamma\' é uma curva plana sem inflexões, satisfazendo certas condições genéricas então dois casos podem ocorrer: 1. se p é um ponto da evoluta afim de \'\\gamma\' em \'s IND. 0\' então temos dois casos: se \'\\gamma\' (\'s IND. 0\') é um ponto sextático então, localmente em p, a evoluta afim é difeomorfa a uma cúspide em \'R POT. 2\' ; se não, localmente em p, a evoluta afim é difeomorfa à uma reta em \'R POT. 2\' , 2. se p = \'\\gamma\' (\'s IND. 0\') é um ponto da normal afim de \'\\gamma\' então temos dois casos: se \'\\gamma\'(\'s IND. 0\') é um ponto parabólico de \'\\gamma\' então, localmente em p, a curva normal afim é difeomorfa a uma cúspide em \'R POT. 2\' ; em outro caso, localmente em p, a curva normal afim é difeomorfa à uma reta em \'R POT. 2\'
id USP_bb2bf1b3b120fb5570713eb3978354cd
oai_identifier_str oai:teses.usp.br:tde-07102010-145223
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Singularidades de curvas na geometria afimSingularities of curves in affine geometryAberraçãoAberrancyAffine geometryCurvas planasGeometria afimPlane curvesSingulartity theoryTeoria de singularidadesNeste trabalho estudamos a geometria da evoluta afim e da curva normal afim associada à uma curva plana sem inflexões a partir do tipo de singularidade das funções suporte afim. O principal resultado estabelece que se \'\\gamma\' é uma curva plana sem inflexões, satisfazendo certas condições genéricas então dois casos podem ocorrer: 1. se p é um ponto da evoluta afim de \'\\gamma\' em \'s IND. 0\' então temos dois casos: se \'\\gamma\' (\'s IND. 0\') é um ponto sextático então, localmente em p, a evoluta afim é difeomorfa a uma cúspide em \'R POT. 2\' ; se não, localmente em p, a evoluta afim é difeomorfa à uma reta em \'R POT. 2\' , 2. se p = \'\\gamma\' (\'s IND. 0\') é um ponto da normal afim de \'\\gamma\' então temos dois casos: se \'\\gamma\'(\'s IND. 0\') é um ponto parabólico de \'\\gamma\' então, localmente em p, a curva normal afim é difeomorfa a uma cúspide em \'R POT. 2\' ; em outro caso, localmente em p, a curva normal afim é difeomorfa à uma reta em \'R POT. 2\'In this work we study the geometry of the affine evolute and the affine normal curve associated with a plane curve without inflections from the type of singularity of affine support functions. The main result is setting if \'\\gamma\' is a flat curve without inflections, satisfying certain conditions generic then, if p is a point of the affine evolute of \'\\gamma\' at \'s IND. 0\' then two cases: if \'\\gamma\' (\'s IND. 0\') is a sextactic point then locally in p the affine evolute is diffeomorphic to a cusp at \'R POT. 2\', otherwise locally in p the affine evolute is diffeomorphic to a straight in \'R POT. 2\', and second if p = \'\\gamma\' (\'s IND. 0\') is a point of the affine normal curve then two cases: if \'\\gamma\'(\'s IND. 0\') is a parabolic point of \'\\gamma\' then locally in p the affine normal curve is diffeomorphic to a cusp at \'R POT. 2\' , in otherwise locally in p the affine normal curve is diffeomorphic to a line in \'R POT. 2\'Biblioteca Digitais de Teses e Dissertações da USPSaia, Marcelo JoséSanchez, Luis Florial Espinoza2010-09-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:12Zoai:teses.usp.br:tde-07102010-145223Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Singularidades de curvas na geometria afim
Singularities of curves in affine geometry
title Singularidades de curvas na geometria afim
spellingShingle Singularidades de curvas na geometria afim
Sanchez, Luis Florial Espinoza
Aberração
Aberrancy
Affine geometry
Curvas planas
Geometria afim
Plane curves
Singulartity theory
Teoria de singularidades
title_short Singularidades de curvas na geometria afim
title_full Singularidades de curvas na geometria afim
title_fullStr Singularidades de curvas na geometria afim
title_full_unstemmed Singularidades de curvas na geometria afim
title_sort Singularidades de curvas na geometria afim
author Sanchez, Luis Florial Espinoza
author_facet Sanchez, Luis Florial Espinoza
author_role author
dc.contributor.none.fl_str_mv Saia, Marcelo José
dc.contributor.author.fl_str_mv Sanchez, Luis Florial Espinoza
dc.subject.por.fl_str_mv Aberração
Aberrancy
Affine geometry
Curvas planas
Geometria afim
Plane curves
Singulartity theory
Teoria de singularidades
topic Aberração
Aberrancy
Affine geometry
Curvas planas
Geometria afim
Plane curves
Singulartity theory
Teoria de singularidades
description Neste trabalho estudamos a geometria da evoluta afim e da curva normal afim associada à uma curva plana sem inflexões a partir do tipo de singularidade das funções suporte afim. O principal resultado estabelece que se \'\\gamma\' é uma curva plana sem inflexões, satisfazendo certas condições genéricas então dois casos podem ocorrer: 1. se p é um ponto da evoluta afim de \'\\gamma\' em \'s IND. 0\' então temos dois casos: se \'\\gamma\' (\'s IND. 0\') é um ponto sextático então, localmente em p, a evoluta afim é difeomorfa a uma cúspide em \'R POT. 2\' ; se não, localmente em p, a evoluta afim é difeomorfa à uma reta em \'R POT. 2\' , 2. se p = \'\\gamma\' (\'s IND. 0\') é um ponto da normal afim de \'\\gamma\' então temos dois casos: se \'\\gamma\'(\'s IND. 0\') é um ponto parabólico de \'\\gamma\' então, localmente em p, a curva normal afim é difeomorfa a uma cúspide em \'R POT. 2\' ; em outro caso, localmente em p, a curva normal afim é difeomorfa à uma reta em \'R POT. 2\'
publishDate 2010
dc.date.none.fl_str_mv 2010-09-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07102010-145223/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256767633817600