Geração automática de dados de teste para programas concorrrentes com meta-heurística
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13022015-143049/ |
Resumo: | A programação concorrente é cada vez mais utilizada nos sistemas atuais com o objetivo de reduzir custos e obter maior eficiência no processamento. Com a importância da programação concorrente é imprescindível que programas que implementam esse paradigma apresentem boa qualidade e estejam livres de defeitos. Assim,diferentes técnicas e critérios de teste vêm sendo definidos para apoiar a validação de aplicações desenvolvidas nesse paradigma. Nesse contexto, a geração automática de dados de teste é importante, pois permite reduzir o custo na geração e seleção de dados relevantes. O uso de técnicas meta-heurísticas tem sido uma área de grande interesse entre os pesquisadores para geração de dados, pois essas técnicas apresentam abordagens aplicáveis a problemas complexos e de difícil solução. Considerando esse aspecto, este trabalho apresenta uma abordagem de geração automática de dados para o teste estrutural de programas concorrentes em MPI (Message Passing Interface). A meta-heurística usada foi Algoritmo Genético em que a busca é guiada por critérios de teste que consideram características implícitas de programas concorrentes. O desempenho da abordagem foi avaliado por meio da cobertura dos dados detestes, da eficácia em revelar defeitos e do custo de execução. Para comparação, a geração aleatória foi considerada. Os resultados indicaram que é promissor usar geração de dados de teste no contexto de programas concorrentes, com resultados interessantes em relação à eficácia e cobertura dos requisitos de teste. |
id |
USP_bfd3227a21559d80953e6f243f0d7360 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-13022015-143049 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Geração automática de dados de teste para programas concorrrentes com meta-heurísticaAutomatic test data generation for concurrent programs with metaheuristicConcurrent programsData generationGeração de dados de testeMeta-heurísticaMetaheuristicProgramação concorrenteSoftware testingTeste de softwareA programação concorrente é cada vez mais utilizada nos sistemas atuais com o objetivo de reduzir custos e obter maior eficiência no processamento. Com a importância da programação concorrente é imprescindível que programas que implementam esse paradigma apresentem boa qualidade e estejam livres de defeitos. Assim,diferentes técnicas e critérios de teste vêm sendo definidos para apoiar a validação de aplicações desenvolvidas nesse paradigma. Nesse contexto, a geração automática de dados de teste é importante, pois permite reduzir o custo na geração e seleção de dados relevantes. O uso de técnicas meta-heurísticas tem sido uma área de grande interesse entre os pesquisadores para geração de dados, pois essas técnicas apresentam abordagens aplicáveis a problemas complexos e de difícil solução. Considerando esse aspecto, este trabalho apresenta uma abordagem de geração automática de dados para o teste estrutural de programas concorrentes em MPI (Message Passing Interface). A meta-heurística usada foi Algoritmo Genético em que a busca é guiada por critérios de teste que consideram características implícitas de programas concorrentes. O desempenho da abordagem foi avaliado por meio da cobertura dos dados detestes, da eficácia em revelar defeitos e do custo de execução. Para comparação, a geração aleatória foi considerada. Os resultados indicaram que é promissor usar geração de dados de teste no contexto de programas concorrentes, com resultados interessantes em relação à eficácia e cobertura dos requisitos de teste.Concurrent programming has been increasingly used in current systems in order to reduce costs and obtain higher processing efficiency and, consequently, it is expected that these systems have high quallity. Therefore, different techniques and testing criteria have been proposed aiming to support the verification and validation of the concurrent applications. In this context, the automated data test generation allows to reduce the testing costs during the generation and selection of data tests. Metaheuristic technique has been widely investigated to support the data test generation because this technique has presented good results to complex and costly problems. In this work, we present an approach to the automated data test generation for message passing concurrent programs in MPI (Message Passing Interface). The generation of data test is performed using the genetic algorithm metaheuristic technique, guiding by structural testing criteria. An experimental study was conducted to evaluate the proposed approach, analyzing the effectiveness and application cost. The results indicate that the genetic algorithm is a promising approach to automated test data generation for concurrent programs, presenting good results in relation to effectiveness and data test coverage.Biblioteca Digitais de Teses e Dissertações da USPSouza, Simone do Rocio Senger deSilva, José Dario Pintor da2014-09-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-13022015-143049/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:56Zoai:teses.usp.br:tde-13022015-143049Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Geração automática de dados de teste para programas concorrrentes com meta-heurística Automatic test data generation for concurrent programs with metaheuristic |
title |
Geração automática de dados de teste para programas concorrrentes com meta-heurística |
spellingShingle |
Geração automática de dados de teste para programas concorrrentes com meta-heurística Silva, José Dario Pintor da Concurrent programs Data generation Geração de dados de teste Meta-heurística Metaheuristic Programação concorrente Software testing Teste de software |
title_short |
Geração automática de dados de teste para programas concorrrentes com meta-heurística |
title_full |
Geração automática de dados de teste para programas concorrrentes com meta-heurística |
title_fullStr |
Geração automática de dados de teste para programas concorrrentes com meta-heurística |
title_full_unstemmed |
Geração automática de dados de teste para programas concorrrentes com meta-heurística |
title_sort |
Geração automática de dados de teste para programas concorrrentes com meta-heurística |
author |
Silva, José Dario Pintor da |
author_facet |
Silva, José Dario Pintor da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Souza, Simone do Rocio Senger de |
dc.contributor.author.fl_str_mv |
Silva, José Dario Pintor da |
dc.subject.por.fl_str_mv |
Concurrent programs Data generation Geração de dados de teste Meta-heurística Metaheuristic Programação concorrente Software testing Teste de software |
topic |
Concurrent programs Data generation Geração de dados de teste Meta-heurística Metaheuristic Programação concorrente Software testing Teste de software |
description |
A programação concorrente é cada vez mais utilizada nos sistemas atuais com o objetivo de reduzir custos e obter maior eficiência no processamento. Com a importância da programação concorrente é imprescindível que programas que implementam esse paradigma apresentem boa qualidade e estejam livres de defeitos. Assim,diferentes técnicas e critérios de teste vêm sendo definidos para apoiar a validação de aplicações desenvolvidas nesse paradigma. Nesse contexto, a geração automática de dados de teste é importante, pois permite reduzir o custo na geração e seleção de dados relevantes. O uso de técnicas meta-heurísticas tem sido uma área de grande interesse entre os pesquisadores para geração de dados, pois essas técnicas apresentam abordagens aplicáveis a problemas complexos e de difícil solução. Considerando esse aspecto, este trabalho apresenta uma abordagem de geração automática de dados para o teste estrutural de programas concorrentes em MPI (Message Passing Interface). A meta-heurística usada foi Algoritmo Genético em que a busca é guiada por critérios de teste que consideram características implícitas de programas concorrentes. O desempenho da abordagem foi avaliado por meio da cobertura dos dados detestes, da eficácia em revelar defeitos e do custo de execução. Para comparação, a geração aleatória foi considerada. Os resultados indicaram que é promissor usar geração de dados de teste no contexto de programas concorrentes, com resultados interessantes em relação à eficácia e cobertura dos requisitos de teste. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13022015-143049/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13022015-143049/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257002474995712 |