Distribuições interferidas: estudo sobre uma distribuição generalizada
Autor(a) principal: | |
---|---|
Data de Publicação: | 1968 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/11/0/tde-20240301-152919/ |
Resumo: | Devido a uma anomalia relativa; distribuição de Poisson em contagens de leveduras, o autor chegou a uma distribuição binomial que não é mais que o modêlo de GREENWOOD e YULE, mas por diferente caminho e com o conceito de interferência. Apresenta o esquema de YULE pr(1 -2)-r e o de GREENWOOD e YULE (Descrito na Dissertação). Baseado na relação (Descrito na Dissertação) determina o que denomina expressão estocástica, dado que essa relação quando é maior que um escapa ao conceito de probabilidade (Descrito na Dissertação). Essa expressão estocástica e simbolizada pela letra grega ϰ. Demonstra o autor que ela pode ser maior, igual ou menor que a unidade, segundo seja a intensidade da interferência. Determina que a outra expressão estocástica ψ deve-se somar um e que o sinal de 𝒱 será igual ψ, isto é, será negativo. Desenvolve o binômio (ϰ + ψ)𝒱 demonstrando sua tendência à normalidade quando 𝒱 cresce em valor absoluto. Apresenta a equivalência desta distribuição, com os modêlos de YULE e GREENWOOD e YULE, enumerando as vantagens apresentadas sôbre estas. Sôbre a hipótese da interferência, construiu esquemas teóricos para apresentar como se distorce uma binomial até chegar a binomial negativa, baseando-se no modelo ϰ = q (A) + λ q (B) sendo q (A) a probabilidade contrária da distribuição de A; q (B) a probabilidade contrária da distribuição B que interfere e λ o coeficiente de interferência. Com exemplos práticos mostra a realidade de suas afirmações, transferindo-as ao campo continuo. Refere-se, porém, a casos onde não se produz a binomial generalizada, alertando sôbre seu uso indiscriminado. Para as contagens que sigam a distribuição binomial negativa, ter-se que fazer transformação dos dados pela fórmula (Descrito na Dissertação), ou, se forem expressos em porcentagem, pela fórmula arc sen (Descrito na Dissertação). As conclusões a que se chega, finalmente, são: 1º) Maior singelez. 2º) Facilidade nos cálculos. 3º) Determinação direta dos momentos. 4º) Unificação das três distribuições. 5º) Aplicabilidade a fenômenos contínuos. |
id |
USP_c4caaf09ed2049c77e3279d14673d04e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20240301-152919 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Distribuições interferidas: estudo sobre uma distribuição generalizadaDISTRIBUIÇÃO BINOMIALDevido a uma anomalia relativa; distribuição de Poisson em contagens de leveduras, o autor chegou a uma distribuição binomial que não é mais que o modêlo de GREENWOOD e YULE, mas por diferente caminho e com o conceito de interferência. Apresenta o esquema de YULE pr(1 -2)-r e o de GREENWOOD e YULE (Descrito na Dissertação). Baseado na relação (Descrito na Dissertação) determina o que denomina expressão estocástica, dado que essa relação quando é maior que um escapa ao conceito de probabilidade (Descrito na Dissertação). Essa expressão estocástica e simbolizada pela letra grega ϰ. Demonstra o autor que ela pode ser maior, igual ou menor que a unidade, segundo seja a intensidade da interferência. Determina que a outra expressão estocástica ψ deve-se somar um e que o sinal de 𝒱 será igual ψ, isto é, será negativo. Desenvolve o binômio (ϰ + ψ)𝒱 demonstrando sua tendência à normalidade quando 𝒱 cresce em valor absoluto. Apresenta a equivalência desta distribuição, com os modêlos de YULE e GREENWOOD e YULE, enumerando as vantagens apresentadas sôbre estas. Sôbre a hipótese da interferência, construiu esquemas teóricos para apresentar como se distorce uma binomial até chegar a binomial negativa, baseando-se no modelo ϰ = q (A) + λ q (B) sendo q (A) a probabilidade contrária da distribuição de A; q (B) a probabilidade contrária da distribuição B que interfere e λ o coeficiente de interferência. Com exemplos práticos mostra a realidade de suas afirmações, transferindo-as ao campo continuo. Refere-se, porém, a casos onde não se produz a binomial generalizada, alertando sôbre seu uso indiscriminado. Para as contagens que sigam a distribuição binomial negativa, ter-se que fazer transformação dos dados pela fórmula (Descrito na Dissertação), ou, se forem expressos em porcentagem, pela fórmula arc sen (Descrito na Dissertação). As conclusões a que se chega, finalmente, são: 1º) Maior singelez. 2º) Facilidade nos cálculos. 3º) Determinação direta dos momentos. 4º) Unificação das três distribuições. 5º) Aplicabilidade a fenômenos contínuos.Biblioteca Digitais de Teses e Dissertações da USPGomes, Frederico PimentelPiedrabuena, Aquiles Eugenico1968-10-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/11/0/tde-20240301-152919/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-03-14T19:29:02Zoai:teses.usp.br:tde-20240301-152919Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-14T19:29:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
title |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
spellingShingle |
Distribuições interferidas: estudo sobre uma distribuição generalizada Piedrabuena, Aquiles Eugenico DISTRIBUIÇÃO BINOMIAL |
title_short |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
title_full |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
title_fullStr |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
title_full_unstemmed |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
title_sort |
Distribuições interferidas: estudo sobre uma distribuição generalizada |
author |
Piedrabuena, Aquiles Eugenico |
author_facet |
Piedrabuena, Aquiles Eugenico |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gomes, Frederico Pimentel |
dc.contributor.author.fl_str_mv |
Piedrabuena, Aquiles Eugenico |
dc.subject.por.fl_str_mv |
DISTRIBUIÇÃO BINOMIAL |
topic |
DISTRIBUIÇÃO BINOMIAL |
description |
Devido a uma anomalia relativa; distribuição de Poisson em contagens de leveduras, o autor chegou a uma distribuição binomial que não é mais que o modêlo de GREENWOOD e YULE, mas por diferente caminho e com o conceito de interferência. Apresenta o esquema de YULE pr(1 -2)-r e o de GREENWOOD e YULE (Descrito na Dissertação). Baseado na relação (Descrito na Dissertação) determina o que denomina expressão estocástica, dado que essa relação quando é maior que um escapa ao conceito de probabilidade (Descrito na Dissertação). Essa expressão estocástica e simbolizada pela letra grega ϰ. Demonstra o autor que ela pode ser maior, igual ou menor que a unidade, segundo seja a intensidade da interferência. Determina que a outra expressão estocástica ψ deve-se somar um e que o sinal de 𝒱 será igual ψ, isto é, será negativo. Desenvolve o binômio (ϰ + ψ)𝒱 demonstrando sua tendência à normalidade quando 𝒱 cresce em valor absoluto. Apresenta a equivalência desta distribuição, com os modêlos de YULE e GREENWOOD e YULE, enumerando as vantagens apresentadas sôbre estas. Sôbre a hipótese da interferência, construiu esquemas teóricos para apresentar como se distorce uma binomial até chegar a binomial negativa, baseando-se no modelo ϰ = q (A) + λ q (B) sendo q (A) a probabilidade contrária da distribuição de A; q (B) a probabilidade contrária da distribuição B que interfere e λ o coeficiente de interferência. Com exemplos práticos mostra a realidade de suas afirmações, transferindo-as ao campo continuo. Refere-se, porém, a casos onde não se produz a binomial generalizada, alertando sôbre seu uso indiscriminado. Para as contagens que sigam a distribuição binomial negativa, ter-se que fazer transformação dos dados pela fórmula (Descrito na Dissertação), ou, se forem expressos em porcentagem, pela fórmula arc sen (Descrito na Dissertação). As conclusões a que se chega, finalmente, são: 1º) Maior singelez. 2º) Facilidade nos cálculos. 3º) Determinação direta dos momentos. 4º) Unificação das três distribuições. 5º) Aplicabilidade a fenômenos contínuos. |
publishDate |
1968 |
dc.date.none.fl_str_mv |
1968-10-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/11/0/tde-20240301-152919/ |
url |
https://teses.usp.br/teses/disponiveis/11/0/tde-20240301-152919/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257228055150592 |