Reflexão de funções cardinais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-06092012-214910/ |
Resumo: | Neste trabalho investigamos problemas sobre reflexão de funções cardinais, fazendo uso de técnicas como submodelos elementares e Teoria PCF. Mostramos que o grau de Lindelöf reflete todos os cardinais fortemente inacessíveis e que um exemplo de espaço onde a mesma função cardinal não reflita um cardinal fracamente inacessível requer a existência de 0#. Além disso, estendemos um resultado de reflexão do caráter, de espaços Lindelöf para espaços linearmente Lindelöf, obtendo novas equivalências com a Hipótese do Contínuo (CH). Obtivemos ainda várias respostas parciais para problemas clássicos deste tópico de pesquisa. |
id |
USP_c83f6d7b08fceae770caf9bf9d5353ef |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-06092012-214910 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Reflexão de funções cardinaisReflection of cardinal functionscardinal functionsContinuum Hypothesisfunções cardinaisgrandes cardinaisHipótese do Contínuolarge cardinalsNeste trabalho investigamos problemas sobre reflexão de funções cardinais, fazendo uso de técnicas como submodelos elementares e Teoria PCF. Mostramos que o grau de Lindelöf reflete todos os cardinais fortemente inacessíveis e que um exemplo de espaço onde a mesma função cardinal não reflita um cardinal fracamente inacessível requer a existência de 0#. Além disso, estendemos um resultado de reflexão do caráter, de espaços Lindelöf para espaços linearmente Lindelöf, obtendo novas equivalências com a Hipótese do Contínuo (CH). Obtivemos ainda várias respostas parciais para problemas clássicos deste tópico de pesquisa.This work investigates problems about reflection of cardinal functions, using techniques such as elementary submodels and PCF Theory. We show that the Lindelöf degree reflects all the strongly inaccessible cardinals and that a example of a space in which the same cardinal function does not reflect a weakly inaccessible cardinal requires \"0# exists\". Furthermore, we extend a result of reflection of the character from Lindelöf spaces to linearly Lindelöf spaces, obtaining new equivalences with the Continuum Hypothesis (CH). We also obtained several partial answers to classic problems of this research topic.Biblioteca Digitais de Teses e Dissertações da USPJunqueira, Lucia RenatoLevi, Alberto Marcelino Efigênio2012-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-06092012-214910/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:32Zoai:teses.usp.br:tde-06092012-214910Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Reflexão de funções cardinais Reflection of cardinal functions |
title |
Reflexão de funções cardinais |
spellingShingle |
Reflexão de funções cardinais Levi, Alberto Marcelino Efigênio cardinal functions Continuum Hypothesis funções cardinais grandes cardinais Hipótese do Contínuo large cardinals |
title_short |
Reflexão de funções cardinais |
title_full |
Reflexão de funções cardinais |
title_fullStr |
Reflexão de funções cardinais |
title_full_unstemmed |
Reflexão de funções cardinais |
title_sort |
Reflexão de funções cardinais |
author |
Levi, Alberto Marcelino Efigênio |
author_facet |
Levi, Alberto Marcelino Efigênio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Junqueira, Lucia Renato |
dc.contributor.author.fl_str_mv |
Levi, Alberto Marcelino Efigênio |
dc.subject.por.fl_str_mv |
cardinal functions Continuum Hypothesis funções cardinais grandes cardinais Hipótese do Contínuo large cardinals |
topic |
cardinal functions Continuum Hypothesis funções cardinais grandes cardinais Hipótese do Contínuo large cardinals |
description |
Neste trabalho investigamos problemas sobre reflexão de funções cardinais, fazendo uso de técnicas como submodelos elementares e Teoria PCF. Mostramos que o grau de Lindelöf reflete todos os cardinais fortemente inacessíveis e que um exemplo de espaço onde a mesma função cardinal não reflita um cardinal fracamente inacessível requer a existência de 0#. Além disso, estendemos um resultado de reflexão do caráter, de espaços Lindelöf para espaços linearmente Lindelöf, obtendo novas equivalências com a Hipótese do Contínuo (CH). Obtivemos ainda várias respostas parciais para problemas clássicos deste tópico de pesquisa. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-06092012-214910/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-06092012-214910/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256724622278656 |