Aspect extraction in sentiment analysis for portuguese language

Detalhes bibliográficos
Autor(a) principal: Balage Filho, Pedro Paulo
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/
Resumo: Aspect-based sentiment analysis is the field of study which extracts and interpret the sentiment, usually classified as positive or negative, towards some target or aspect in an opinionated text. This doctoral dissertation details an empirical study of techniques and methods for aspect extraction in aspect-based sentiment analysis with the focus on Portuguese. Three different approaches were explored: frequency-based, relation-based and machine learning. In each one, this work shows a comparative study between a Portuguese and an English corpora and the differences found in applying the approaches. In addition, richer linguistic knowledge is also explored by using syntatic dependencies and semantic roles, leading to better results. This work lead to the establishment of new benchmarks for the aspect extraction in Portuguese.
id USP_c8faabd26705703e0c54e82ff5a6ca6e
oai_identifier_str oai:teses.usp.br:tde-05122017-140435
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Aspect extraction in sentiment analysis for portuguese languageExtração de aspectos em análise de sentimentos para língua portuguesaAnálise de SentimentosAnálise de sentimentos orientada a aspectosAspect-based sentiment analysisMineração de OpiniõesOpinion miningSentiment analysisAspect-based sentiment analysis is the field of study which extracts and interpret the sentiment, usually classified as positive or negative, towards some target or aspect in an opinionated text. This doctoral dissertation details an empirical study of techniques and methods for aspect extraction in aspect-based sentiment analysis with the focus on Portuguese. Three different approaches were explored: frequency-based, relation-based and machine learning. In each one, this work shows a comparative study between a Portuguese and an English corpora and the differences found in applying the approaches. In addition, richer linguistic knowledge is also explored by using syntatic dependencies and semantic roles, leading to better results. This work lead to the establishment of new benchmarks for the aspect extraction in Portuguese.A análise do sentimento orientada a aspectos é o campo de estudo que extrai e interpreta o sentimento, geralmente classificado como positivo ou negativo, em direção a algum alvo ou aspecto em um texto de opinião. Esta tese de doutorado detalha um estudo empírico de técnicas e métodos para extração de aspectos em análises de sentimentos baseadas em aspectos com foco na língua Portuguesa. Foram exploradas três diferentes abordagens: métodos baseados na frequências, métodos baseados na relação e métodos de aprendizagem de máquina. Em cada abordagem, este trabalho mostra um estudo comparativo entre um córpus para o Português e outro para o Inglês e as diferenças encontradas na aplicação destas abordagens. Além disso, o conhecimento linguístico mais rico também é explorado pelo uso de dependências sintáticas e papéis semânticos, levando a melhores resultados. Este trabalho resultou no estabelecimento de novos padrões de avaliação para a extração de aspectos em Português.Biblioteca Digitais de Teses e Dissertações da USPPardo, Thiago Alexandre SalgueiroBalage Filho, Pedro Paulo2017-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-05122017-140435Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Aspect extraction in sentiment analysis for portuguese language
Extração de aspectos em análise de sentimentos para língua portuguesa
title Aspect extraction in sentiment analysis for portuguese language
spellingShingle Aspect extraction in sentiment analysis for portuguese language
Balage Filho, Pedro Paulo
Análise de Sentimentos
Análise de sentimentos orientada a aspectos
Aspect-based sentiment analysis
Mineração de Opiniões
Opinion mining
Sentiment analysis
title_short Aspect extraction in sentiment analysis for portuguese language
title_full Aspect extraction in sentiment analysis for portuguese language
title_fullStr Aspect extraction in sentiment analysis for portuguese language
title_full_unstemmed Aspect extraction in sentiment analysis for portuguese language
title_sort Aspect extraction in sentiment analysis for portuguese language
author Balage Filho, Pedro Paulo
author_facet Balage Filho, Pedro Paulo
author_role author
dc.contributor.none.fl_str_mv Pardo, Thiago Alexandre Salgueiro
dc.contributor.author.fl_str_mv Balage Filho, Pedro Paulo
dc.subject.por.fl_str_mv Análise de Sentimentos
Análise de sentimentos orientada a aspectos
Aspect-based sentiment analysis
Mineração de Opiniões
Opinion mining
Sentiment analysis
topic Análise de Sentimentos
Análise de sentimentos orientada a aspectos
Aspect-based sentiment analysis
Mineração de Opiniões
Opinion mining
Sentiment analysis
description Aspect-based sentiment analysis is the field of study which extracts and interpret the sentiment, usually classified as positive or negative, towards some target or aspect in an opinionated text. This doctoral dissertation details an empirical study of techniques and methods for aspect extraction in aspect-based sentiment analysis with the focus on Portuguese. Three different approaches were explored: frequency-based, relation-based and machine learning. In each one, this work shows a comparative study between a Portuguese and an English corpora and the differences found in applying the approaches. In addition, richer linguistic knowledge is also explored by using syntatic dependencies and semantic roles, leading to better results. This work lead to the establishment of new benchmarks for the aspect extraction in Portuguese.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256753232674816