Aspect extraction in sentiment analysis for portuguese language
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/ |
Resumo: | Aspect-based sentiment analysis is the field of study which extracts and interpret the sentiment, usually classified as positive or negative, towards some target or aspect in an opinionated text. This doctoral dissertation details an empirical study of techniques and methods for aspect extraction in aspect-based sentiment analysis with the focus on Portuguese. Three different approaches were explored: frequency-based, relation-based and machine learning. In each one, this work shows a comparative study between a Portuguese and an English corpora and the differences found in applying the approaches. In addition, richer linguistic knowledge is also explored by using syntatic dependencies and semantic roles, leading to better results. This work lead to the establishment of new benchmarks for the aspect extraction in Portuguese. |
id |
USP_c8faabd26705703e0c54e82ff5a6ca6e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05122017-140435 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aspect extraction in sentiment analysis for portuguese languageExtração de aspectos em análise de sentimentos para língua portuguesaAnálise de SentimentosAnálise de sentimentos orientada a aspectosAspect-based sentiment analysisMineração de OpiniõesOpinion miningSentiment analysisAspect-based sentiment analysis is the field of study which extracts and interpret the sentiment, usually classified as positive or negative, towards some target or aspect in an opinionated text. This doctoral dissertation details an empirical study of techniques and methods for aspect extraction in aspect-based sentiment analysis with the focus on Portuguese. Three different approaches were explored: frequency-based, relation-based and machine learning. In each one, this work shows a comparative study between a Portuguese and an English corpora and the differences found in applying the approaches. In addition, richer linguistic knowledge is also explored by using syntatic dependencies and semantic roles, leading to better results. This work lead to the establishment of new benchmarks for the aspect extraction in Portuguese.A análise do sentimento orientada a aspectos é o campo de estudo que extrai e interpreta o sentimento, geralmente classificado como positivo ou negativo, em direção a algum alvo ou aspecto em um texto de opinião. Esta tese de doutorado detalha um estudo empírico de técnicas e métodos para extração de aspectos em análises de sentimentos baseadas em aspectos com foco na língua Portuguesa. Foram exploradas três diferentes abordagens: métodos baseados na frequências, métodos baseados na relação e métodos de aprendizagem de máquina. Em cada abordagem, este trabalho mostra um estudo comparativo entre um córpus para o Português e outro para o Inglês e as diferenças encontradas na aplicação destas abordagens. Além disso, o conhecimento linguístico mais rico também é explorado pelo uso de dependências sintáticas e papéis semânticos, levando a melhores resultados. Este trabalho resultou no estabelecimento de novos padrões de avaliação para a extração de aspectos em Português.Biblioteca Digitais de Teses e Dissertações da USPPardo, Thiago Alexandre SalgueiroBalage Filho, Pedro Paulo2017-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-05122017-140435Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aspect extraction in sentiment analysis for portuguese language Extração de aspectos em análise de sentimentos para língua portuguesa |
title |
Aspect extraction in sentiment analysis for portuguese language |
spellingShingle |
Aspect extraction in sentiment analysis for portuguese language Balage Filho, Pedro Paulo Análise de Sentimentos Análise de sentimentos orientada a aspectos Aspect-based sentiment analysis Mineração de Opiniões Opinion mining Sentiment analysis |
title_short |
Aspect extraction in sentiment analysis for portuguese language |
title_full |
Aspect extraction in sentiment analysis for portuguese language |
title_fullStr |
Aspect extraction in sentiment analysis for portuguese language |
title_full_unstemmed |
Aspect extraction in sentiment analysis for portuguese language |
title_sort |
Aspect extraction in sentiment analysis for portuguese language |
author |
Balage Filho, Pedro Paulo |
author_facet |
Balage Filho, Pedro Paulo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pardo, Thiago Alexandre Salgueiro |
dc.contributor.author.fl_str_mv |
Balage Filho, Pedro Paulo |
dc.subject.por.fl_str_mv |
Análise de Sentimentos Análise de sentimentos orientada a aspectos Aspect-based sentiment analysis Mineração de Opiniões Opinion mining Sentiment analysis |
topic |
Análise de Sentimentos Análise de sentimentos orientada a aspectos Aspect-based sentiment analysis Mineração de Opiniões Opinion mining Sentiment analysis |
description |
Aspect-based sentiment analysis is the field of study which extracts and interpret the sentiment, usually classified as positive or negative, towards some target or aspect in an opinionated text. This doctoral dissertation details an empirical study of techniques and methods for aspect extraction in aspect-based sentiment analysis with the focus on Portuguese. Three different approaches were explored: frequency-based, relation-based and machine learning. In each one, this work shows a comparative study between a Portuguese and an English corpora and the differences found in applying the approaches. In addition, richer linguistic knowledge is also explored by using syntatic dependencies and semantic roles, leading to better results. This work lead to the establishment of new benchmarks for the aspect extraction in Portuguese. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05122017-140435/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256753232674816 |