Introdução às Anomalias Conformes e os Teoremas C & F

Detalhes bibliográficos
Autor(a) principal: Nagaoka, Gabriel Nicolaz
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04052018-140729/
Resumo: As ideias fundamentais sobre entropia de emaranhamento e fluxos de renormalização são expostas, assim como uma introdução a CFTs e sua ligacão com a estrutura do espaco de parâmetros. A anomalia de traço é calculada em uma abordagem semi-clássica usando o método de heat kernel\" e regularização por função zeta . Mostramos que os coeficientes de Seeley-DeWitt são responsáveis pela quebra de simetria conforme em um espaço-tempo curvo de dimensão par, com isso alcançamos uma definição geométrica para as cargas centrais. A inexistência de anomalias no caso de dimensões ímpares também e mostrado. O C-theorem\", que prova a monotonicidade das cargas centrais sob o fluxo de renormalização, é demonstrado como feito por Zamolodchikov por meio de uma abordagem euclideana assumindo unitariedade, positividade por reflexão e condições de renormalizabilidade. A análise feita por Cardy também e demonstrada, nela considera-se os mesmos ingredientes. Por fim, a prova tecida por Casini & Huerta é demonstrada com detalhes, essa prova utiliza das propriedades de strong subadditivity da entropia de emaranhamento, unitariedade e invariância sob o grupo de Poincaré. Com isso, uma conexão com informação quântica é feita naturalmente. No último capítulo generalizamos o conceito de carga central para dimensões ímpares as definindo como o termo universal na entropia de emarahamento de uma esfera. As considerações geométricas feitas para provar o C-theorem\" são estendidas para um espaço-tempo de Minkowski com três dimensões. Como consequência temos a prova do F-theorem\" que é o analogo em três dimensões do C-theorem\".
id USP_c92383af4127a631dd128bfd94324e39
oai_identifier_str oai:teses.usp.br:tde-04052018-140729
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Introdução às Anomalias Conformes e os Teoremas C & FIntroduction to Conformal Anomalies and the C & F TheoremsAnomalias de TraçoC-TheoremC-TheoremEntanglement EntropyEntropia de EmaranhamentoF-TheoremF-theoremSeeley-DeWittSeeley-DeWittTrace AnomalyAs ideias fundamentais sobre entropia de emaranhamento e fluxos de renormalização são expostas, assim como uma introdução a CFTs e sua ligacão com a estrutura do espaco de parâmetros. A anomalia de traço é calculada em uma abordagem semi-clássica usando o método de heat kernel\" e regularização por função zeta . Mostramos que os coeficientes de Seeley-DeWitt são responsáveis pela quebra de simetria conforme em um espaço-tempo curvo de dimensão par, com isso alcançamos uma definição geométrica para as cargas centrais. A inexistência de anomalias no caso de dimensões ímpares também e mostrado. O C-theorem\", que prova a monotonicidade das cargas centrais sob o fluxo de renormalização, é demonstrado como feito por Zamolodchikov por meio de uma abordagem euclideana assumindo unitariedade, positividade por reflexão e condições de renormalizabilidade. A análise feita por Cardy também e demonstrada, nela considera-se os mesmos ingredientes. Por fim, a prova tecida por Casini & Huerta é demonstrada com detalhes, essa prova utiliza das propriedades de strong subadditivity da entropia de emaranhamento, unitariedade e invariância sob o grupo de Poincaré. Com isso, uma conexão com informação quântica é feita naturalmente. No último capítulo generalizamos o conceito de carga central para dimensões ímpares as definindo como o termo universal na entropia de emarahamento de uma esfera. As considerações geométricas feitas para provar o C-theorem\" são estendidas para um espaço-tempo de Minkowski com três dimensões. Como consequência temos a prova do F-theorem\" que é o analogo em três dimensões do C-theorem\".The fundamental ideas of entanglement entropy and RG flows are laid out, as well as the basics of CFTs and its connection to the framework of RG flows. The trace anomaly is calculated in a semi-classical fashion by using the heat kernel method and zeta-function regularization. It is shown that the Seeley-DeWitt coefficients are responsible for the breaking of conformal symmetry in a curved even-dimensional background, which also achieves a geometrical definition of a central charge. The absence of anomalies in odd space-time dimensions is also contemplated. The C-theorem, which proves the monotonicity of the two dimensional central charge under RG flows, is demonstrated as first done by Zamolodchikov in an euclidean approach assuming unitarity, reflection positivity, and renormalizability conditions. Cardy\'s analysis is also demonstrated by considering the same conditions as Zamolodchikovs . And at last the proof via entanglement entropy by Casini & Huerta which relies on the strong subadditivity property of EE, unitarity and Poincaré invariance is explained in detail, providing a quantum information approach to the problem. In the last chapter a generalization of central charges to odd dimensional space-times is given through the universal term of the EE of a sphere. We provide the extension of the geometrical setup considered in the proof of the C-theorem to a three dimensional Minkowski space-time, which ultimately yields the F-theorem, constituting the three dimensional analog of the C-theorem.Biblioteca Digitais de Teses e Dissertações da USPTrancanelli, DiegoNagaoka, Gabriel Nicolaz2018-03-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-04052018-140729/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-09-20T19:49:24Zoai:teses.usp.br:tde-04052018-140729Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-09-20T19:49:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Introdução às Anomalias Conformes e os Teoremas C & F
Introduction to Conformal Anomalies and the C & F Theorems
title Introdução às Anomalias Conformes e os Teoremas C & F
spellingShingle Introdução às Anomalias Conformes e os Teoremas C & F
Nagaoka, Gabriel Nicolaz
Anomalias de Traço
C-Theorem
C-Theorem
Entanglement Entropy
Entropia de Emaranhamento
F-Theorem
F-theorem
Seeley-DeWitt
Seeley-DeWitt
Trace Anomaly
title_short Introdução às Anomalias Conformes e os Teoremas C & F
title_full Introdução às Anomalias Conformes e os Teoremas C & F
title_fullStr Introdução às Anomalias Conformes e os Teoremas C & F
title_full_unstemmed Introdução às Anomalias Conformes e os Teoremas C & F
title_sort Introdução às Anomalias Conformes e os Teoremas C & F
author Nagaoka, Gabriel Nicolaz
author_facet Nagaoka, Gabriel Nicolaz
author_role author
dc.contributor.none.fl_str_mv Trancanelli, Diego
dc.contributor.author.fl_str_mv Nagaoka, Gabriel Nicolaz
dc.subject.por.fl_str_mv Anomalias de Traço
C-Theorem
C-Theorem
Entanglement Entropy
Entropia de Emaranhamento
F-Theorem
F-theorem
Seeley-DeWitt
Seeley-DeWitt
Trace Anomaly
topic Anomalias de Traço
C-Theorem
C-Theorem
Entanglement Entropy
Entropia de Emaranhamento
F-Theorem
F-theorem
Seeley-DeWitt
Seeley-DeWitt
Trace Anomaly
description As ideias fundamentais sobre entropia de emaranhamento e fluxos de renormalização são expostas, assim como uma introdução a CFTs e sua ligacão com a estrutura do espaco de parâmetros. A anomalia de traço é calculada em uma abordagem semi-clássica usando o método de heat kernel\" e regularização por função zeta . Mostramos que os coeficientes de Seeley-DeWitt são responsáveis pela quebra de simetria conforme em um espaço-tempo curvo de dimensão par, com isso alcançamos uma definição geométrica para as cargas centrais. A inexistência de anomalias no caso de dimensões ímpares também e mostrado. O C-theorem\", que prova a monotonicidade das cargas centrais sob o fluxo de renormalização, é demonstrado como feito por Zamolodchikov por meio de uma abordagem euclideana assumindo unitariedade, positividade por reflexão e condições de renormalizabilidade. A análise feita por Cardy também e demonstrada, nela considera-se os mesmos ingredientes. Por fim, a prova tecida por Casini & Huerta é demonstrada com detalhes, essa prova utiliza das propriedades de strong subadditivity da entropia de emaranhamento, unitariedade e invariância sob o grupo de Poincaré. Com isso, uma conexão com informação quântica é feita naturalmente. No último capítulo generalizamos o conceito de carga central para dimensões ímpares as definindo como o termo universal na entropia de emarahamento de uma esfera. As considerações geométricas feitas para provar o C-theorem\" são estendidas para um espaço-tempo de Minkowski com três dimensões. Como consequência temos a prova do F-theorem\" que é o analogo em três dimensões do C-theorem\".
publishDate 2018
dc.date.none.fl_str_mv 2018-03-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04052018-140729/
url http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04052018-140729/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256658113200128