Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo

Detalhes bibliográficos
Autor(a) principal: Volpe Neto, Gilberto
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55137/tde-01072024-101554/
Resumo: A evolução dos diversos efeitos causados pelo aumento da temperatura da Terra está se tornando cada vez mais frequente, tornando necessário implementar novas formas de trabalho para mitigar ao máximo o efeito estufa. Uma maneira de reduzir a emissão de gases do efeito estufa é por meio do crédito de carbono, onde empresas emissoras podem compensar suas emissões por meio de projetos de absorção de gases. A agricultura é uma das principais emissoras, mas através do cultivo adequado das plantas e do manejo correto do solo, ela também pode se tornar uma grande captadora de carbono. No entanto, os métodos atuais para medir a quantidade de carbono no solo são complexos e custosos. Portanto, este estudo tem como objetivo desenvolver um modelo de espaço de estados com dois compartimentos, um de decaimento lento e outro de decaimento rápido, para modelar a quantidade de carbono armazenado no solo. O modelo proposto foi testado em dois conjuntos de dados: um conjunto simulado e outro com medições de três terrenos no Canadá. No caso dos dados simulados, o modelo demonstrou alta eficácia na simulação das cadeias de Markov e na precisão preditiva. O índice de Gelman-Rubin ficou próximo de 1,03, indicando uma boa convergência das cadeias de Markov. Em termos de precisão do modelo, o MAPE - Mean Absolute Percentage Error foi de apenas 0,61%. No conjunto de dados dos terrenos canadenses, as cadeias de Markov também convergiram com qualidade, com um valor de R igual a 1 para os três terrenos. A precisão do modelo, avaliada pelo MAPE, foi de 5,29%, 0,017% e 0,021% para os terrenos analisados. Esses resultados evidenciam a eficiência do modelo na simulação e previsão do carbono orgânico no solo, tanto para dados simulados quanto para dados reais, fornecendo uma ferramenta confiável para entender as mudanças e os efeitos das práticas de manejo do solo ao longo do tempo.
id USP_cbf9866716598491c665bda54478cc59
oai_identifier_str oai:teses.usp.br:tde-01072024-101554
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do soloState space model for simulating soil organic matter contentMarkov Chain Monte Carlo (MCMC)Matéria orgânica no soloMétodo de Monte Carlo com Cadeias de Markov (MCMC)Modelo de espaço de estadosNIMBLENIMBLEOrganic matter in soilState-space modelA evolução dos diversos efeitos causados pelo aumento da temperatura da Terra está se tornando cada vez mais frequente, tornando necessário implementar novas formas de trabalho para mitigar ao máximo o efeito estufa. Uma maneira de reduzir a emissão de gases do efeito estufa é por meio do crédito de carbono, onde empresas emissoras podem compensar suas emissões por meio de projetos de absorção de gases. A agricultura é uma das principais emissoras, mas através do cultivo adequado das plantas e do manejo correto do solo, ela também pode se tornar uma grande captadora de carbono. No entanto, os métodos atuais para medir a quantidade de carbono no solo são complexos e custosos. Portanto, este estudo tem como objetivo desenvolver um modelo de espaço de estados com dois compartimentos, um de decaimento lento e outro de decaimento rápido, para modelar a quantidade de carbono armazenado no solo. O modelo proposto foi testado em dois conjuntos de dados: um conjunto simulado e outro com medições de três terrenos no Canadá. No caso dos dados simulados, o modelo demonstrou alta eficácia na simulação das cadeias de Markov e na precisão preditiva. O índice de Gelman-Rubin ficou próximo de 1,03, indicando uma boa convergência das cadeias de Markov. Em termos de precisão do modelo, o MAPE - Mean Absolute Percentage Error foi de apenas 0,61%. No conjunto de dados dos terrenos canadenses, as cadeias de Markov também convergiram com qualidade, com um valor de R igual a 1 para os três terrenos. A precisão do modelo, avaliada pelo MAPE, foi de 5,29%, 0,017% e 0,021% para os terrenos analisados. Esses resultados evidenciam a eficiência do modelo na simulação e previsão do carbono orgânico no solo, tanto para dados simulados quanto para dados reais, fornecendo uma ferramenta confiável para entender as mudanças e os efeitos das práticas de manejo do solo ao longo do tempo.The evolution of various effects caused by the increase in Earths temperature is becoming more frequent, making it necessary to implement new working methods to mitigate the greenhouse effect as much as possible. One way to reduce greenhouse gas emissions is through carbon credits, where emitting companies can offset their emissions through gas absorption projects. Agriculture is one of the main contributors, but through proper plant cultivation and soil management, it can also become a significant carbon sink. However, current methods for measuring soil carbon content are complex and costly. Therefore, this study aims to develop a state-space model with two compartments, one for slow decay and another for fast decay, to model the amount of carbon stored in the soil. The proposed model was tested on two datasets: a simulated dataset and another with measurements from three Canadian terrains. In the case of the simulated data, the model demonstrated high effectiveness in simulating Markov chains and predictive accuracy. The Gelman-Rubin index was close to 1.03, indicating good convergence of the Markov chains. In terms of model accuracy, the mean absolute percentage error (MAPE) was only 0.61%. In the dataset of Canadian terrains, the Markov chains also converged well, with a R value of 1 for all three terrains. The models accuracy, evaluated by MAPE, was 5.29%, 0.017%, and 0.021% for the analyzed terrains. These results highlight the efficiency of the model in simulating and predicting soil organic carbon, both for simulated and real data, providing a reliable tool for understanding changes and the effects of soil management practices over time.Biblioteca Digitais de Teses e Dissertações da USPBoas, Paulino Ribeiro VillasVolpe Neto, Gilberto2024-04-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55137/tde-01072024-101554/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-07-01T13:40:02Zoai:teses.usp.br:tde-01072024-101554Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-07-01T13:40:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
State space model for simulating soil organic matter content
title Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
spellingShingle Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
Volpe Neto, Gilberto
Markov Chain Monte Carlo (MCMC)
Matéria orgânica no solo
Método de Monte Carlo com Cadeias de Markov (MCMC)
Modelo de espaço de estados
NIMBLE
NIMBLE
Organic matter in soil
State-space model
title_short Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
title_full Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
title_fullStr Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
title_full_unstemmed Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
title_sort Modelo de espaço de estados para simulação do conteúdo de matéria orgânica do solo
author Volpe Neto, Gilberto
author_facet Volpe Neto, Gilberto
author_role author
dc.contributor.none.fl_str_mv Boas, Paulino Ribeiro Villas
dc.contributor.author.fl_str_mv Volpe Neto, Gilberto
dc.subject.por.fl_str_mv Markov Chain Monte Carlo (MCMC)
Matéria orgânica no solo
Método de Monte Carlo com Cadeias de Markov (MCMC)
Modelo de espaço de estados
NIMBLE
NIMBLE
Organic matter in soil
State-space model
topic Markov Chain Monte Carlo (MCMC)
Matéria orgânica no solo
Método de Monte Carlo com Cadeias de Markov (MCMC)
Modelo de espaço de estados
NIMBLE
NIMBLE
Organic matter in soil
State-space model
description A evolução dos diversos efeitos causados pelo aumento da temperatura da Terra está se tornando cada vez mais frequente, tornando necessário implementar novas formas de trabalho para mitigar ao máximo o efeito estufa. Uma maneira de reduzir a emissão de gases do efeito estufa é por meio do crédito de carbono, onde empresas emissoras podem compensar suas emissões por meio de projetos de absorção de gases. A agricultura é uma das principais emissoras, mas através do cultivo adequado das plantas e do manejo correto do solo, ela também pode se tornar uma grande captadora de carbono. No entanto, os métodos atuais para medir a quantidade de carbono no solo são complexos e custosos. Portanto, este estudo tem como objetivo desenvolver um modelo de espaço de estados com dois compartimentos, um de decaimento lento e outro de decaimento rápido, para modelar a quantidade de carbono armazenado no solo. O modelo proposto foi testado em dois conjuntos de dados: um conjunto simulado e outro com medições de três terrenos no Canadá. No caso dos dados simulados, o modelo demonstrou alta eficácia na simulação das cadeias de Markov e na precisão preditiva. O índice de Gelman-Rubin ficou próximo de 1,03, indicando uma boa convergência das cadeias de Markov. Em termos de precisão do modelo, o MAPE - Mean Absolute Percentage Error foi de apenas 0,61%. No conjunto de dados dos terrenos canadenses, as cadeias de Markov também convergiram com qualidade, com um valor de R igual a 1 para os três terrenos. A precisão do modelo, avaliada pelo MAPE, foi de 5,29%, 0,017% e 0,021% para os terrenos analisados. Esses resultados evidenciam a eficiência do modelo na simulação e previsão do carbono orgânico no solo, tanto para dados simulados quanto para dados reais, fornecendo uma ferramenta confiável para entender as mudanças e os efeitos das práticas de manejo do solo ao longo do tempo.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55137/tde-01072024-101554/
url https://www.teses.usp.br/teses/disponiveis/55/55137/tde-01072024-101554/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090278231900160