Modelos de integração de informação em evolução pré-biótica.

Detalhes bibliográficos
Autor(a) principal: Campos, Paulo Roberto de Araujo
Data de Publicação: 2001
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-25092008-144909/
Resumo: O paradigma de sistemas de moléculas auto-replicantes é o modelo de quase-espécies, no qual as moléculas são representadas por seqüências binárias de tamanho L e o mecanismo de replicação é suposto imperfeito. Em particular, cada seqüência é gerada corretamente com probabilidade Q = qL, onde q é a probabilidade de cópia exata por dígito. Um dos resultados mais intrigantes no modelo para o relevo de replicação de pico único, no qual há apenas um tipo de molécula com vantagem seletiva a em relação aos outros tipos, é a observação de um limiar de erro a partir do qual toda informação biológica relevante é perdida. A transição de limiar de erro verificada para Qc = l /a pode ser visualizada como uma transição de fase do tipo ordem-desordem. Verificamos que a largura dessa transição decresce com L de acordo com L-1. Concluímos também que as grandezas físicas de interesse são bem descritas por meio de funções de escala. Elaboramos ainda uma versão estocástica (isto é, tamanho de população N finito) para o modelo de quase-espécies, no qual a dinâmica é descrita por uma cadeia de Markov. Mostramos que o tempo característico &#964 para o desaparecimento de seqüências mestras na população obedece uma relação de escala bem definida. A transição em nosso modelo é constatada através da divergência de &#964 em Qc no limite de N &#8594 &#8734 ,sendo que a largura da transição decresce de acordo com N -1/2. Em nossa abordagem não utilizamos nenhuma definição arbitrária para o limiar de erro para população finita. Como solução para o problema da crise de informação associada ao limiar de erro estudamos o modelo de hiperciclos. Neste modelo, as macromoléculas se replicam com o auxílio de outros membros do hiperciclo por meio do mecanismo de catálise. Estudamos analiticamente a propagação de erro no hiperciclo e obtemos os diagramas de fases no espaço de parâmetros para vários tamanhos de hiperciclo n. Esses diagramas descrevem as regiões de estabilidade das diversas soluções de estado estacionário do sistema. Constatamos que para hiperciclos com n &#8804 4 existe um limiar de erro menor que aquele verificado no modelo de quase-espécies. Desde que o suporte catalítico realizado por uma molécula no hiperciclo pode ser considerado de fato um comportamento altruísta, modelos para evolução do altruísmo como, a teoria de seleção de grupos, têm sido utilizados no contexto de evolução pré-biótica. Aqui investigamos a evolução da produção de enzimas e os efeitos de sinergia utilizando esses conceitos.
id USP_cd19b460b273a58121411219d218d029
oai_identifier_str oai:teses.usp.br:tde-25092008-144909
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de integração de informação em evolução pré-biótica.Information crisis in models of prebiotic evolution.EvoluçãoEvolutionPré-bióticoPrebioticQuase-espéciesQuasi-speciesO paradigma de sistemas de moléculas auto-replicantes é o modelo de quase-espécies, no qual as moléculas são representadas por seqüências binárias de tamanho L e o mecanismo de replicação é suposto imperfeito. Em particular, cada seqüência é gerada corretamente com probabilidade Q = qL, onde q é a probabilidade de cópia exata por dígito. Um dos resultados mais intrigantes no modelo para o relevo de replicação de pico único, no qual há apenas um tipo de molécula com vantagem seletiva a em relação aos outros tipos, é a observação de um limiar de erro a partir do qual toda informação biológica relevante é perdida. A transição de limiar de erro verificada para Qc = l /a pode ser visualizada como uma transição de fase do tipo ordem-desordem. Verificamos que a largura dessa transição decresce com L de acordo com L-1. Concluímos também que as grandezas físicas de interesse são bem descritas por meio de funções de escala. Elaboramos ainda uma versão estocástica (isto é, tamanho de população N finito) para o modelo de quase-espécies, no qual a dinâmica é descrita por uma cadeia de Markov. Mostramos que o tempo característico &#964 para o desaparecimento de seqüências mestras na população obedece uma relação de escala bem definida. A transição em nosso modelo é constatada através da divergência de &#964 em Qc no limite de N &#8594 &#8734 ,sendo que a largura da transição decresce de acordo com N -1/2. Em nossa abordagem não utilizamos nenhuma definição arbitrária para o limiar de erro para população finita. Como solução para o problema da crise de informação associada ao limiar de erro estudamos o modelo de hiperciclos. Neste modelo, as macromoléculas se replicam com o auxílio de outros membros do hiperciclo por meio do mecanismo de catálise. Estudamos analiticamente a propagação de erro no hiperciclo e obtemos os diagramas de fases no espaço de parâmetros para vários tamanhos de hiperciclo n. Esses diagramas descrevem as regiões de estabilidade das diversas soluções de estado estacionário do sistema. Constatamos que para hiperciclos com n &#8804 4 existe um limiar de erro menor que aquele verificado no modelo de quase-espécies. Desde que o suporte catalítico realizado por uma molécula no hiperciclo pode ser considerado de fato um comportamento altruísta, modelos para evolução do altruísmo como, a teoria de seleção de grupos, têm sido utilizados no contexto de evolução pré-biótica. Aqui investigamos a evolução da produção de enzimas e os efeitos de sinergia utilizando esses conceitos.The quasi-species model is the paradigm of systems composed of self-replicating molecules, which are represented by sequences of fixed length L. The replication machinery is assumed to be imperfect. Particularly, each sequence is copied exactly with probability Q=qL, where q denotes the probability of exact copy per digit. One of the most intriguing results of the model for the single-peak replication landscape, which considers the existence of a master sequence that has a selective advantage a in comparison to the other types, is the occurrence of an error threshold phenomenon beyond the biological information is completely lost. The error threshold transition can be viewed as an order-disorder phase-transition. We investigated the sharpness of the threshold and found that its characteristics persist across a range of Q of order L-1 about Qc. Other physical quantities of interest are also well described by universal functions. We formulate a stochastic version (i.e., finite population size N) for the quasispecies model, in which a Markov chain defines the dynamics. We show that the characteristic time r for the disappearance of master sequences in the population obeys a well defined scaling relation. The transition in this model is signalized by the divergente of t at Qc in the limit N &#8594 &#8734, and the sharpness of the transition decreases like N -1/2. In our approach we do not use any arbitrary definition of the error threshold for finite population. As a solution for the information crisis associated to the error threshold, here we considered the hypercycle model, where the macromolecules self-replicate with the catalytic support of the other members of the hypercycle. We study analytically the error propagation in the hypercycle and obtain the phases diagrams in the space of parameters for several hypercycle sizes n. These diagrams describe the stability regions of the steady state solutions of the system. We find that for hypercicle size n &#8804 4 the error threshold is smaller than that for the quasispecies model. Since the catalytic support developed by a molecule is in fact an altruistic behavior, some models for the evolution of altruism, for instance, the selection group theory, have been investigated in the context of pre-biotic evolution. Specifically, here we analyze the evolution of enzyme production and the effects of synergism.Biblioteca Digitais de Teses e Dissertações da USPFontanari, Jose FernandoCampos, Paulo Roberto de Araujo2001-08-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76131/tde-25092008-144909/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:56Zoai:teses.usp.br:tde-25092008-144909Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de integração de informação em evolução pré-biótica.
Information crisis in models of prebiotic evolution.
title Modelos de integração de informação em evolução pré-biótica.
spellingShingle Modelos de integração de informação em evolução pré-biótica.
Campos, Paulo Roberto de Araujo
Evolução
Evolution
Pré-biótico
Prebiotic
Quase-espécies
Quasi-species
title_short Modelos de integração de informação em evolução pré-biótica.
title_full Modelos de integração de informação em evolução pré-biótica.
title_fullStr Modelos de integração de informação em evolução pré-biótica.
title_full_unstemmed Modelos de integração de informação em evolução pré-biótica.
title_sort Modelos de integração de informação em evolução pré-biótica.
author Campos, Paulo Roberto de Araujo
author_facet Campos, Paulo Roberto de Araujo
author_role author
dc.contributor.none.fl_str_mv Fontanari, Jose Fernando
dc.contributor.author.fl_str_mv Campos, Paulo Roberto de Araujo
dc.subject.por.fl_str_mv Evolução
Evolution
Pré-biótico
Prebiotic
Quase-espécies
Quasi-species
topic Evolução
Evolution
Pré-biótico
Prebiotic
Quase-espécies
Quasi-species
description O paradigma de sistemas de moléculas auto-replicantes é o modelo de quase-espécies, no qual as moléculas são representadas por seqüências binárias de tamanho L e o mecanismo de replicação é suposto imperfeito. Em particular, cada seqüência é gerada corretamente com probabilidade Q = qL, onde q é a probabilidade de cópia exata por dígito. Um dos resultados mais intrigantes no modelo para o relevo de replicação de pico único, no qual há apenas um tipo de molécula com vantagem seletiva a em relação aos outros tipos, é a observação de um limiar de erro a partir do qual toda informação biológica relevante é perdida. A transição de limiar de erro verificada para Qc = l /a pode ser visualizada como uma transição de fase do tipo ordem-desordem. Verificamos que a largura dessa transição decresce com L de acordo com L-1. Concluímos também que as grandezas físicas de interesse são bem descritas por meio de funções de escala. Elaboramos ainda uma versão estocástica (isto é, tamanho de população N finito) para o modelo de quase-espécies, no qual a dinâmica é descrita por uma cadeia de Markov. Mostramos que o tempo característico &#964 para o desaparecimento de seqüências mestras na população obedece uma relação de escala bem definida. A transição em nosso modelo é constatada através da divergência de &#964 em Qc no limite de N &#8594 &#8734 ,sendo que a largura da transição decresce de acordo com N -1/2. Em nossa abordagem não utilizamos nenhuma definição arbitrária para o limiar de erro para população finita. Como solução para o problema da crise de informação associada ao limiar de erro estudamos o modelo de hiperciclos. Neste modelo, as macromoléculas se replicam com o auxílio de outros membros do hiperciclo por meio do mecanismo de catálise. Estudamos analiticamente a propagação de erro no hiperciclo e obtemos os diagramas de fases no espaço de parâmetros para vários tamanhos de hiperciclo n. Esses diagramas descrevem as regiões de estabilidade das diversas soluções de estado estacionário do sistema. Constatamos que para hiperciclos com n &#8804 4 existe um limiar de erro menor que aquele verificado no modelo de quase-espécies. Desde que o suporte catalítico realizado por uma molécula no hiperciclo pode ser considerado de fato um comportamento altruísta, modelos para evolução do altruísmo como, a teoria de seleção de grupos, têm sido utilizados no contexto de evolução pré-biótica. Aqui investigamos a evolução da produção de enzimas e os efeitos de sinergia utilizando esses conceitos.
publishDate 2001
dc.date.none.fl_str_mv 2001-08-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76131/tde-25092008-144909/
url http://www.teses.usp.br/teses/disponiveis/76/76131/tde-25092008-144909/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826319016878145536