Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-111803/ |
Resumo: | In this thesis we prove the genericity of the set of metrics on a manifold with boundary M^{n+1}, such that all free boundary constant mean curvature (CMC) embeddings \\varphi: \\Sigma^n \\to M^{n+1}, being \\Sigma a manifold with boundary, are non-degenerate (Bumpy Metrics), (Theorem 2.4.1). We also give sufficient conditions to obtain a free boundary CMC deformation of a CMC inmersion (Theorems 3.2.1 and 3.2.2), and a stability criterion for this type of immersions (Theorem 3.3.3 and Corollary 3.3.5). In addition, given a one-parametric family, {\\varphi _t : \\Sigma \\to M} , of free boundary CMC immersions, we give criteria for the existence of smooth bifurcated branches of free boundary CMC immersions for the family {\\varphi_t}, via the implicit function theorem when the kernel of the Jacobi operator J is non-trivial, (Theorems 4.2.3 and 4.3.2), and we study stability and instability problems for hypersurfaces in this bifurcated branches (Theorems 5.3.1 and 5.3.3). |
id |
USP_ce4e6b39fd07fcd8a6b27e6d277ea4d0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15022019-111803 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfacesGenericidade das métricas bumpy, bifurcação e estabilidade em hipersuperfícies de CMC e fronteira livreBifurcação.BifurcationBumpy metricsConstant mean curvatureCurvatura Média ConstanteEstabilidadeFree boundaryFronteira LivreJacobi operatorMétricas BumpyOperador de JacobiStabilityIn this thesis we prove the genericity of the set of metrics on a manifold with boundary M^{n+1}, such that all free boundary constant mean curvature (CMC) embeddings \\varphi: \\Sigma^n \\to M^{n+1}, being \\Sigma a manifold with boundary, are non-degenerate (Bumpy Metrics), (Theorem 2.4.1). We also give sufficient conditions to obtain a free boundary CMC deformation of a CMC inmersion (Theorems 3.2.1 and 3.2.2), and a stability criterion for this type of immersions (Theorem 3.3.3 and Corollary 3.3.5). In addition, given a one-parametric family, {\\varphi _t : \\Sigma \\to M} , of free boundary CMC immersions, we give criteria for the existence of smooth bifurcated branches of free boundary CMC immersions for the family {\\varphi_t}, via the implicit function theorem when the kernel of the Jacobi operator J is non-trivial, (Theorems 4.2.3 and 4.3.2), and we study stability and instability problems for hypersurfaces in this bifurcated branches (Theorems 5.3.1 and 5.3.3).Nesta tese, provamos a genericidade do conjunto de métricas em uma variedade com fronteira M^{n+1}, de modo que todos os mergulhos de curvatura média constante (CMC) e fronteira livre \\varphi : \\Sigma^n \\to M^{n+1}, sendo \\Sigma uma variedade com fronteira, sejam não-degenerados (Métricas Bumpy), (Teorema 2.4.1). Nós também fornecemos condições suficientes para obter uma deformação CMC e fronteira livre de uma imersão CMC (Teoremas 3.2.1 and 3.2.2), e um critério de estabilidade para este tipo de imersões (Teorema 3.3.3 and Corolario 3.3.5). Além disso, dada uma família 1-paramétrica, {\\varphi _t : \\Sigma \\to M} , de imersões de CMC e fronteira livre, damos os critérios para a existência de ramos de bifurcação suaves de imersões CMC e fronteira livre para a familia {\\varphi_t}, por meio de o teorema da função implícita quando o kernel do operador Jacobi J é não-trivial, (Teoremas 4.2.3 and 4.3.2), e estudamos o problema da estabilidade e instabilidade para hipersuperfícies em naqueles ramos de bifurcação (Teoremas 5.3.1 and 5.3.3).Biblioteca Digitais de Teses e Dissertações da USPPiccione, PaoloCárdenas, Carlos Wilson Rodríguez2018-12-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-111803/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-09T23:21:59Zoai:teses.usp.br:tde-15022019-111803Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces Genericidade das métricas bumpy, bifurcação e estabilidade em hipersuperfícies de CMC e fronteira livre |
title |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces |
spellingShingle |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces Cárdenas, Carlos Wilson Rodríguez Bifurcação. Bifurcation Bumpy metrics Constant mean curvature Curvatura Média Constante Estabilidade Free boundary Fronteira Livre Jacobi operator Métricas Bumpy Operador de Jacobi Stability |
title_short |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces |
title_full |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces |
title_fullStr |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces |
title_full_unstemmed |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces |
title_sort |
Genericity of bumpy metrics, bifurcation and stability in free boundary CMC hypersurfaces |
author |
Cárdenas, Carlos Wilson Rodríguez |
author_facet |
Cárdenas, Carlos Wilson Rodríguez |
author_role |
author |
dc.contributor.none.fl_str_mv |
Piccione, Paolo |
dc.contributor.author.fl_str_mv |
Cárdenas, Carlos Wilson Rodríguez |
dc.subject.por.fl_str_mv |
Bifurcação. Bifurcation Bumpy metrics Constant mean curvature Curvatura Média Constante Estabilidade Free boundary Fronteira Livre Jacobi operator Métricas Bumpy Operador de Jacobi Stability |
topic |
Bifurcação. Bifurcation Bumpy metrics Constant mean curvature Curvatura Média Constante Estabilidade Free boundary Fronteira Livre Jacobi operator Métricas Bumpy Operador de Jacobi Stability |
description |
In this thesis we prove the genericity of the set of metrics on a manifold with boundary M^{n+1}, such that all free boundary constant mean curvature (CMC) embeddings \\varphi: \\Sigma^n \\to M^{n+1}, being \\Sigma a manifold with boundary, are non-degenerate (Bumpy Metrics), (Theorem 2.4.1). We also give sufficient conditions to obtain a free boundary CMC deformation of a CMC inmersion (Theorems 3.2.1 and 3.2.2), and a stability criterion for this type of immersions (Theorem 3.3.3 and Corollary 3.3.5). In addition, given a one-parametric family, {\\varphi _t : \\Sigma \\to M} , of free boundary CMC immersions, we give criteria for the existence of smooth bifurcated branches of free boundary CMC immersions for the family {\\varphi_t}, via the implicit function theorem when the kernel of the Jacobi operator J is non-trivial, (Theorems 4.2.3 and 4.3.2), and we study stability and instability problems for hypersurfaces in this bifurcated branches (Theorems 5.3.1 and 5.3.3). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-111803/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-111803/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256561162911744 |