Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants

Detalhes bibliográficos
Autor(a) principal: Silva, Antonio Marcos Miranda
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/
Resumo: Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are essential for enhancing plant health by increasing their tolerance to biotic and abiotic stresses. This study aimed to investigate the role of native AMF and PGPR screened from the Caatinga Biome, an extreme environment, in mitigating drought effects and promoting maize (Zea mays L.) growth. Three hypotheses were tested: (i) Caatinga-adapted plants harbour potential AMF and PGPR that can be screened and used as inoculants in maize crops; (ii) the effectiveness of a native AMF inoculum obtained from a harsh environment varies with drought levels, leading to changes in soil and plant microbiological parameters related to nutrient cycling and the plant antioxidant system; (iii) a combination of AMF and PGPR can enhance 33P uptake in maize plants under soil water stress. To test the first hypothesis, soil rhizosphere samples from Neoglaziovia variegate and Tripogonella spicata were sampled in Caatinga Biome, and the mycorrhizal community was characterized using high-throughput sequencing of the partial 18S rRNA gene. The results revealed that the community of arbuscular mycorrhizal fungi in the rhizosphere of each plant encompasses a unique composition, structure, and modularity, which can differentially assist them in the hostile environment. For the second hypothesis, a greenhouse experiment was carried out, using treatments simulating severe drought (30 % of water-holding capacity [WHC]), moderate drought (50 % of WHC), and no drought (80 % of WHC). The results showed that the better use of the AMF inoculum varied according to drought levels, with better performance observed under moderate drought due to an increase in plant biomass. Finally, to test the third hypothesis, a microcosm experiment was conducted to investigate the effect of a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) on 33P uptake in maize plants under soil water stress. Overall, 33P facilitation was modulated by soil water content, with dual-inoculation and rhizobacteria alone being more efficient under severe drought, whereas under moderate drought conditions, mycorrhizae alone were more effective in promoting plant 33P uptake. In conclusion, this study highlights the potential of using AMF and PGPR as a combined strategy to promote plant growth and development under drought conditions. However, further research is needed to explore their potential for improving crop yields under non-controlled conditions.
id USP_cfa346f91926800da934f7dfa698376e
oai_identifier_str oai:teses.usp.br:tde-03082023-081931
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plantsFungos micorrízicos arbusculares e rizobactérias atenuando o estresse hídrico em plantas de milhoTripogon spicatusTripogon spicatusBacterial inoculationCaroáCaroáDéficit hídricoInoculação bacterianaInterações solo-plantaMycorrhizal symbiosisPlanta da ressurreiçãoResurrection plantSimbiose micorrízicaSoil-plant interactionsWater deficitArbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are essential for enhancing plant health by increasing their tolerance to biotic and abiotic stresses. This study aimed to investigate the role of native AMF and PGPR screened from the Caatinga Biome, an extreme environment, in mitigating drought effects and promoting maize (Zea mays L.) growth. Three hypotheses were tested: (i) Caatinga-adapted plants harbour potential AMF and PGPR that can be screened and used as inoculants in maize crops; (ii) the effectiveness of a native AMF inoculum obtained from a harsh environment varies with drought levels, leading to changes in soil and plant microbiological parameters related to nutrient cycling and the plant antioxidant system; (iii) a combination of AMF and PGPR can enhance 33P uptake in maize plants under soil water stress. To test the first hypothesis, soil rhizosphere samples from Neoglaziovia variegate and Tripogonella spicata were sampled in Caatinga Biome, and the mycorrhizal community was characterized using high-throughput sequencing of the partial 18S rRNA gene. The results revealed that the community of arbuscular mycorrhizal fungi in the rhizosphere of each plant encompasses a unique composition, structure, and modularity, which can differentially assist them in the hostile environment. For the second hypothesis, a greenhouse experiment was carried out, using treatments simulating severe drought (30 % of water-holding capacity [WHC]), moderate drought (50 % of WHC), and no drought (80 % of WHC). The results showed that the better use of the AMF inoculum varied according to drought levels, with better performance observed under moderate drought due to an increase in plant biomass. Finally, to test the third hypothesis, a microcosm experiment was conducted to investigate the effect of a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) on 33P uptake in maize plants under soil water stress. Overall, 33P facilitation was modulated by soil water content, with dual-inoculation and rhizobacteria alone being more efficient under severe drought, whereas under moderate drought conditions, mycorrhizae alone were more effective in promoting plant 33P uptake. In conclusion, this study highlights the potential of using AMF and PGPR as a combined strategy to promote plant growth and development under drought conditions. However, further research is needed to explore their potential for improving crop yields under non-controlled conditions.Os fungos micorrízicos arbusculares (FMA) e as rizobactérias promotoras de crescimento vegetal (RPCV) são essenciais para a saúde das plantas, aumentando sua tolerância a estresses bióticos e abióticos. Este estudo teve como objetivo investigar o papel de FMA e RPCV nativos, selecionados do Bioma Caatinga, um ambiente extremo, na mitigação dos efeitos da seca e na promoção do crescimento do milho (Zea mays L.). Três hipóteses foram testadas: (i) plantas adaptadas à Caatinga abrigam FMA e RPCV com potencial para serem usados como inoculantes na cultura do milho. (ii) a eficácia de um inoculo de FMA nativo obtido de um ambiente hostil varia de acordo com os níveis de seca, levando a mudanças nos parâmetros microbiológicos do solo e da planta relacionados ao ciclo de nutrientes e ao sistema antioxidante da planta. (iii) uma combinação de FMA e RPCV pode aumentar a absorção de 33P em plantas de milho sob estresse hídrico do solo. Para testar a primeira hipótese, amostras de solo rizosférico de Neoglaziovia variegata e Tripogonella spicata foram coletadas no Bioma Caatinga, e a comunidade micorrízica foi caracterizada usando sequenciamento de alto rendimento do gene parcial 18S rRNA. Os resultados revelaram que a comunidade de fungos micorrízicos arbusculares na rizosfera de cada planta abrange uma composição, estrutura e modularidade únicas, que podem ajudá-las diferencialmente no ambiente hostil. Para a segunda hipótese, um experimento em casa de vegetação foi realizado, usando tratamentos que simularam seca severa (30% da capacidade de retenção de água [CRA]), seca moderada (50% da CRA) e nenhuma seca (80% da CRA). Os resultados mostraram que o melhor uso do inoculo de AMF variou de acordo com os níveis de seca, com melhor desempenho observado sob seca moderada devido ao aumento da biomassa da planta. Por fim, para testar a terceira hipótese, foi realizado um experimento de microcosmo para investigar o efeito da combinação de FMA (Rhizophagus clarus) e RPCV (Bacillus sp.) na absorção de 33P em plantas de milho sob estresse hídrico do solo. Em geral, a facilitação do 33P foi modulada pelo teor de água do solo, com a dupla inoculação e as rizobactérias sozinhas sendo mais eficientes sob seca severa, enquanto sob condições de seca moderada, as micorrizas sozinhas foram mais eficazes na promoção da absorção de 33P pela planta. Em conclusão, este estudo destaca o potencial de usar FMA e RPCV nativos como uma estratégia combinada para promover o crescimento e desenvolvimento de plantas sob condições de seca. No entanto, mais pesquisas são necessárias para explorar seu potencial na melhoria do rendimento das culturas em condições não controladas.Biblioteca Digitais de Teses e Dissertações da USPCardoso, Elke Jurandy Bran NogueiraSilva, Antonio Marcos Miranda2023-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-04T19:25:57Zoai:teses.usp.br:tde-03082023-081931Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-04T19:25:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
Fungos micorrízicos arbusculares e rizobactérias atenuando o estresse hídrico em plantas de milho
title Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
spellingShingle Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
Silva, Antonio Marcos Miranda
Tripogon spicatus
Tripogon spicatus
Bacterial inoculation
Caroá
Caroá
Déficit hídrico
Inoculação bacteriana
Interações solo-planta
Mycorrhizal symbiosis
Planta da ressurreição
Resurrection plant
Simbiose micorrízica
Soil-plant interactions
Water deficit
title_short Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
title_full Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
title_fullStr Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
title_full_unstemmed Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
title_sort Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
author Silva, Antonio Marcos Miranda
author_facet Silva, Antonio Marcos Miranda
author_role author
dc.contributor.none.fl_str_mv Cardoso, Elke Jurandy Bran Nogueira
dc.contributor.author.fl_str_mv Silva, Antonio Marcos Miranda
dc.subject.por.fl_str_mv Tripogon spicatus
Tripogon spicatus
Bacterial inoculation
Caroá
Caroá
Déficit hídrico
Inoculação bacteriana
Interações solo-planta
Mycorrhizal symbiosis
Planta da ressurreição
Resurrection plant
Simbiose micorrízica
Soil-plant interactions
Water deficit
topic Tripogon spicatus
Tripogon spicatus
Bacterial inoculation
Caroá
Caroá
Déficit hídrico
Inoculação bacteriana
Interações solo-planta
Mycorrhizal symbiosis
Planta da ressurreição
Resurrection plant
Simbiose micorrízica
Soil-plant interactions
Water deficit
description Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are essential for enhancing plant health by increasing their tolerance to biotic and abiotic stresses. This study aimed to investigate the role of native AMF and PGPR screened from the Caatinga Biome, an extreme environment, in mitigating drought effects and promoting maize (Zea mays L.) growth. Three hypotheses were tested: (i) Caatinga-adapted plants harbour potential AMF and PGPR that can be screened and used as inoculants in maize crops; (ii) the effectiveness of a native AMF inoculum obtained from a harsh environment varies with drought levels, leading to changes in soil and plant microbiological parameters related to nutrient cycling and the plant antioxidant system; (iii) a combination of AMF and PGPR can enhance 33P uptake in maize plants under soil water stress. To test the first hypothesis, soil rhizosphere samples from Neoglaziovia variegate and Tripogonella spicata were sampled in Caatinga Biome, and the mycorrhizal community was characterized using high-throughput sequencing of the partial 18S rRNA gene. The results revealed that the community of arbuscular mycorrhizal fungi in the rhizosphere of each plant encompasses a unique composition, structure, and modularity, which can differentially assist them in the hostile environment. For the second hypothesis, a greenhouse experiment was carried out, using treatments simulating severe drought (30 % of water-holding capacity [WHC]), moderate drought (50 % of WHC), and no drought (80 % of WHC). The results showed that the better use of the AMF inoculum varied according to drought levels, with better performance observed under moderate drought due to an increase in plant biomass. Finally, to test the third hypothesis, a microcosm experiment was conducted to investigate the effect of a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) on 33P uptake in maize plants under soil water stress. Overall, 33P facilitation was modulated by soil water content, with dual-inoculation and rhizobacteria alone being more efficient under severe drought, whereas under moderate drought conditions, mycorrhizae alone were more effective in promoting plant 33P uptake. In conclusion, this study highlights the potential of using AMF and PGPR as a combined strategy to promote plant growth and development under drought conditions. However, further research is needed to explore their potential for improving crop yields under non-controlled conditions.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/
url https://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090344718958592