Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/ |
Resumo: | Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are essential for enhancing plant health by increasing their tolerance to biotic and abiotic stresses. This study aimed to investigate the role of native AMF and PGPR screened from the Caatinga Biome, an extreme environment, in mitigating drought effects and promoting maize (Zea mays L.) growth. Three hypotheses were tested: (i) Caatinga-adapted plants harbour potential AMF and PGPR that can be screened and used as inoculants in maize crops; (ii) the effectiveness of a native AMF inoculum obtained from a harsh environment varies with drought levels, leading to changes in soil and plant microbiological parameters related to nutrient cycling and the plant antioxidant system; (iii) a combination of AMF and PGPR can enhance 33P uptake in maize plants under soil water stress. To test the first hypothesis, soil rhizosphere samples from Neoglaziovia variegate and Tripogonella spicata were sampled in Caatinga Biome, and the mycorrhizal community was characterized using high-throughput sequencing of the partial 18S rRNA gene. The results revealed that the community of arbuscular mycorrhizal fungi in the rhizosphere of each plant encompasses a unique composition, structure, and modularity, which can differentially assist them in the hostile environment. For the second hypothesis, a greenhouse experiment was carried out, using treatments simulating severe drought (30 % of water-holding capacity [WHC]), moderate drought (50 % of WHC), and no drought (80 % of WHC). The results showed that the better use of the AMF inoculum varied according to drought levels, with better performance observed under moderate drought due to an increase in plant biomass. Finally, to test the third hypothesis, a microcosm experiment was conducted to investigate the effect of a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) on 33P uptake in maize plants under soil water stress. Overall, 33P facilitation was modulated by soil water content, with dual-inoculation and rhizobacteria alone being more efficient under severe drought, whereas under moderate drought conditions, mycorrhizae alone were more effective in promoting plant 33P uptake. In conclusion, this study highlights the potential of using AMF and PGPR as a combined strategy to promote plant growth and development under drought conditions. However, further research is needed to explore their potential for improving crop yields under non-controlled conditions. |
id |
USP_cfa346f91926800da934f7dfa698376e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03082023-081931 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plantsFungos micorrízicos arbusculares e rizobactérias atenuando o estresse hídrico em plantas de milhoTripogon spicatusTripogon spicatusBacterial inoculationCaroáCaroáDéficit hídricoInoculação bacterianaInterações solo-plantaMycorrhizal symbiosisPlanta da ressurreiçãoResurrection plantSimbiose micorrízicaSoil-plant interactionsWater deficitArbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are essential for enhancing plant health by increasing their tolerance to biotic and abiotic stresses. This study aimed to investigate the role of native AMF and PGPR screened from the Caatinga Biome, an extreme environment, in mitigating drought effects and promoting maize (Zea mays L.) growth. Three hypotheses were tested: (i) Caatinga-adapted plants harbour potential AMF and PGPR that can be screened and used as inoculants in maize crops; (ii) the effectiveness of a native AMF inoculum obtained from a harsh environment varies with drought levels, leading to changes in soil and plant microbiological parameters related to nutrient cycling and the plant antioxidant system; (iii) a combination of AMF and PGPR can enhance 33P uptake in maize plants under soil water stress. To test the first hypothesis, soil rhizosphere samples from Neoglaziovia variegate and Tripogonella spicata were sampled in Caatinga Biome, and the mycorrhizal community was characterized using high-throughput sequencing of the partial 18S rRNA gene. The results revealed that the community of arbuscular mycorrhizal fungi in the rhizosphere of each plant encompasses a unique composition, structure, and modularity, which can differentially assist them in the hostile environment. For the second hypothesis, a greenhouse experiment was carried out, using treatments simulating severe drought (30 % of water-holding capacity [WHC]), moderate drought (50 % of WHC), and no drought (80 % of WHC). The results showed that the better use of the AMF inoculum varied according to drought levels, with better performance observed under moderate drought due to an increase in plant biomass. Finally, to test the third hypothesis, a microcosm experiment was conducted to investigate the effect of a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) on 33P uptake in maize plants under soil water stress. Overall, 33P facilitation was modulated by soil water content, with dual-inoculation and rhizobacteria alone being more efficient under severe drought, whereas under moderate drought conditions, mycorrhizae alone were more effective in promoting plant 33P uptake. In conclusion, this study highlights the potential of using AMF and PGPR as a combined strategy to promote plant growth and development under drought conditions. However, further research is needed to explore their potential for improving crop yields under non-controlled conditions.Os fungos micorrízicos arbusculares (FMA) e as rizobactérias promotoras de crescimento vegetal (RPCV) são essenciais para a saúde das plantas, aumentando sua tolerância a estresses bióticos e abióticos. Este estudo teve como objetivo investigar o papel de FMA e RPCV nativos, selecionados do Bioma Caatinga, um ambiente extremo, na mitigação dos efeitos da seca e na promoção do crescimento do milho (Zea mays L.). Três hipóteses foram testadas: (i) plantas adaptadas à Caatinga abrigam FMA e RPCV com potencial para serem usados como inoculantes na cultura do milho. (ii) a eficácia de um inoculo de FMA nativo obtido de um ambiente hostil varia de acordo com os níveis de seca, levando a mudanças nos parâmetros microbiológicos do solo e da planta relacionados ao ciclo de nutrientes e ao sistema antioxidante da planta. (iii) uma combinação de FMA e RPCV pode aumentar a absorção de 33P em plantas de milho sob estresse hídrico do solo. Para testar a primeira hipótese, amostras de solo rizosférico de Neoglaziovia variegata e Tripogonella spicata foram coletadas no Bioma Caatinga, e a comunidade micorrízica foi caracterizada usando sequenciamento de alto rendimento do gene parcial 18S rRNA. Os resultados revelaram que a comunidade de fungos micorrízicos arbusculares na rizosfera de cada planta abrange uma composição, estrutura e modularidade únicas, que podem ajudá-las diferencialmente no ambiente hostil. Para a segunda hipótese, um experimento em casa de vegetação foi realizado, usando tratamentos que simularam seca severa (30% da capacidade de retenção de água [CRA]), seca moderada (50% da CRA) e nenhuma seca (80% da CRA). Os resultados mostraram que o melhor uso do inoculo de AMF variou de acordo com os níveis de seca, com melhor desempenho observado sob seca moderada devido ao aumento da biomassa da planta. Por fim, para testar a terceira hipótese, foi realizado um experimento de microcosmo para investigar o efeito da combinação de FMA (Rhizophagus clarus) e RPCV (Bacillus sp.) na absorção de 33P em plantas de milho sob estresse hídrico do solo. Em geral, a facilitação do 33P foi modulada pelo teor de água do solo, com a dupla inoculação e as rizobactérias sozinhas sendo mais eficientes sob seca severa, enquanto sob condições de seca moderada, as micorrizas sozinhas foram mais eficazes na promoção da absorção de 33P pela planta. Em conclusão, este estudo destaca o potencial de usar FMA e RPCV nativos como uma estratégia combinada para promover o crescimento e desenvolvimento de plantas sob condições de seca. No entanto, mais pesquisas são necessárias para explorar seu potencial na melhoria do rendimento das culturas em condições não controladas.Biblioteca Digitais de Teses e Dissertações da USPCardoso, Elke Jurandy Bran NogueiraSilva, Antonio Marcos Miranda2023-05-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-04T19:25:57Zoai:teses.usp.br:tde-03082023-081931Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-04T19:25:57Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants Fungos micorrízicos arbusculares e rizobactérias atenuando o estresse hídrico em plantas de milho |
title |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants |
spellingShingle |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants Silva, Antonio Marcos Miranda Tripogon spicatus Tripogon spicatus Bacterial inoculation Caroá Caroá Déficit hídrico Inoculação bacteriana Interações solo-planta Mycorrhizal symbiosis Planta da ressurreição Resurrection plant Simbiose micorrízica Soil-plant interactions Water deficit |
title_short |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants |
title_full |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants |
title_fullStr |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants |
title_full_unstemmed |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants |
title_sort |
Arbuscular mycorrhizal fungi and rhizobacteria attenuating drought stress in maize plants |
author |
Silva, Antonio Marcos Miranda |
author_facet |
Silva, Antonio Marcos Miranda |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cardoso, Elke Jurandy Bran Nogueira |
dc.contributor.author.fl_str_mv |
Silva, Antonio Marcos Miranda |
dc.subject.por.fl_str_mv |
Tripogon spicatus Tripogon spicatus Bacterial inoculation Caroá Caroá Déficit hídrico Inoculação bacteriana Interações solo-planta Mycorrhizal symbiosis Planta da ressurreição Resurrection plant Simbiose micorrízica Soil-plant interactions Water deficit |
topic |
Tripogon spicatus Tripogon spicatus Bacterial inoculation Caroá Caroá Déficit hídrico Inoculação bacteriana Interações solo-planta Mycorrhizal symbiosis Planta da ressurreição Resurrection plant Simbiose micorrízica Soil-plant interactions Water deficit |
description |
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are essential for enhancing plant health by increasing their tolerance to biotic and abiotic stresses. This study aimed to investigate the role of native AMF and PGPR screened from the Caatinga Biome, an extreme environment, in mitigating drought effects and promoting maize (Zea mays L.) growth. Three hypotheses were tested: (i) Caatinga-adapted plants harbour potential AMF and PGPR that can be screened and used as inoculants in maize crops; (ii) the effectiveness of a native AMF inoculum obtained from a harsh environment varies with drought levels, leading to changes in soil and plant microbiological parameters related to nutrient cycling and the plant antioxidant system; (iii) a combination of AMF and PGPR can enhance 33P uptake in maize plants under soil water stress. To test the first hypothesis, soil rhizosphere samples from Neoglaziovia variegate and Tripogonella spicata were sampled in Caatinga Biome, and the mycorrhizal community was characterized using high-throughput sequencing of the partial 18S rRNA gene. The results revealed that the community of arbuscular mycorrhizal fungi in the rhizosphere of each plant encompasses a unique composition, structure, and modularity, which can differentially assist them in the hostile environment. For the second hypothesis, a greenhouse experiment was carried out, using treatments simulating severe drought (30 % of water-holding capacity [WHC]), moderate drought (50 % of WHC), and no drought (80 % of WHC). The results showed that the better use of the AMF inoculum varied according to drought levels, with better performance observed under moderate drought due to an increase in plant biomass. Finally, to test the third hypothesis, a microcosm experiment was conducted to investigate the effect of a combination of AMF (Rhizophagus clarus) and PGPR (Bacillus sp.) on 33P uptake in maize plants under soil water stress. Overall, 33P facilitation was modulated by soil water content, with dual-inoculation and rhizobacteria alone being more efficient under severe drought, whereas under moderate drought conditions, mycorrhizae alone were more effective in promoting plant 33P uptake. In conclusion, this study highlights the potential of using AMF and PGPR as a combined strategy to promote plant growth and development under drought conditions. However, further research is needed to explore their potential for improving crop yields under non-controlled conditions. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-03082023-081931/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256644287725568 |