Influência local com procura \"forward\" em modelos de regressão linear

Detalhes bibliográficos
Autor(a) principal: Bustamante, Juan Pablo Mamani
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-19012017-112532/
Resumo: A identificação de observações influentes e/ou aberrantes de um conjunto de dados é conhecida como uma parte das análises de diagnóstico. Esta técnica de diagnóstico têm como uma das finalidades verificar a robustez de um modelo estatístico, pois a não identificação dos dados influentes pode afetar a análise ou obter resultados incorretos. As metodologias comumente utilizadas para o diagnóstico de observações influentes em modelos de regressão são métodos de influência global (Belsey et al., 1980). Cook (1986) introduziu um método geral para avaliar a influência local de pequenas perturbações no modelo estatístico ou nos dados, usando diferentes tipos de perturbações. Como complemento às técnicas de detecção de observações discrepantes, é proposto o método procura \\forward\", por Atkinson e Riani (2000), que é uma metodologia para detectar observações atípicas mascaradas. Neste trabalho, propomos o uso da influência local com procura \"forward\" na obtenção de observações mascaradas influentes considerando modelos de regressão linear.
id USP_d1f819b96d672d8713151e337dfad353
oai_identifier_str oai:teses.usp.br:tde-19012017-112532
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Influência local com procura \"forward\" em modelos de regressão linearLocal influence with forward search in linear regression modelsConformal normal curvatureCurvatura normal conformalDiagnostic methodForward searchInfluência localLocal influenceMétodo de diagnósticoModelo de regressãoProcura "forward".Regression modelA identificação de observações influentes e/ou aberrantes de um conjunto de dados é conhecida como uma parte das análises de diagnóstico. Esta técnica de diagnóstico têm como uma das finalidades verificar a robustez de um modelo estatístico, pois a não identificação dos dados influentes pode afetar a análise ou obter resultados incorretos. As metodologias comumente utilizadas para o diagnóstico de observações influentes em modelos de regressão são métodos de influência global (Belsey et al., 1980). Cook (1986) introduziu um método geral para avaliar a influência local de pequenas perturbações no modelo estatístico ou nos dados, usando diferentes tipos de perturbações. Como complemento às técnicas de detecção de observações discrepantes, é proposto o método procura \\forward\", por Atkinson e Riani (2000), que é uma metodologia para detectar observações atípicas mascaradas. Neste trabalho, propomos o uso da influência local com procura \"forward\" na obtenção de observações mascaradas influentes considerando modelos de regressão linear.The identification of influential and/or atypical observations in a data set is known as a part of the diagnostic analysis. One of the purposes of the diagnostic analysis is to verify the robustness of a statistical model, as the non-identification of influential observations can affect the analysis or may cause the obtainment of incorrect results. The most commonly used methodology for the diagnostic of influential observations in regression models are the global influence (Belsey et al., 1980). Cook (1986) introduced a general method to evaluate the local influence of small perturbations in the statistical model or in the data set using different perturbation schemes. As a complement to the techniques of detection atypical observations, it is proposed the forward search procedure by Atkinson e Riani (2000), which is a methodology to detect the masked atypical observations in a data set. In this work we propose the use of the local influence approach together with the forward search to obtain the masked influential observations in linear regression models.Biblioteca Digitais de Teses e Dissertações da USPAoki, ReikoBustamante, Juan Pablo Mamani2015-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/104/104131/tde-19012017-112532/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:34:08Zoai:teses.usp.br:tde-19012017-112532Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:34:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Influência local com procura \"forward\" em modelos de regressão linear
Local influence with forward search in linear regression models
title Influência local com procura \"forward\" em modelos de regressão linear
spellingShingle Influência local com procura \"forward\" em modelos de regressão linear
Bustamante, Juan Pablo Mamani
Conformal normal curvature
Curvatura normal conformal
Diagnostic method
Forward search
Influência local
Local influence
Método de diagnóstico
Modelo de regressão
Procura "forward".
Regression model
title_short Influência local com procura \"forward\" em modelos de regressão linear
title_full Influência local com procura \"forward\" em modelos de regressão linear
title_fullStr Influência local com procura \"forward\" em modelos de regressão linear
title_full_unstemmed Influência local com procura \"forward\" em modelos de regressão linear
title_sort Influência local com procura \"forward\" em modelos de regressão linear
author Bustamante, Juan Pablo Mamani
author_facet Bustamante, Juan Pablo Mamani
author_role author
dc.contributor.none.fl_str_mv Aoki, Reiko
dc.contributor.author.fl_str_mv Bustamante, Juan Pablo Mamani
dc.subject.por.fl_str_mv Conformal normal curvature
Curvatura normal conformal
Diagnostic method
Forward search
Influência local
Local influence
Método de diagnóstico
Modelo de regressão
Procura "forward".
Regression model
topic Conformal normal curvature
Curvatura normal conformal
Diagnostic method
Forward search
Influência local
Local influence
Método de diagnóstico
Modelo de regressão
Procura "forward".
Regression model
description A identificação de observações influentes e/ou aberrantes de um conjunto de dados é conhecida como uma parte das análises de diagnóstico. Esta técnica de diagnóstico têm como uma das finalidades verificar a robustez de um modelo estatístico, pois a não identificação dos dados influentes pode afetar a análise ou obter resultados incorretos. As metodologias comumente utilizadas para o diagnóstico de observações influentes em modelos de regressão são métodos de influência global (Belsey et al., 1980). Cook (1986) introduziu um método geral para avaliar a influência local de pequenas perturbações no modelo estatístico ou nos dados, usando diferentes tipos de perturbações. Como complemento às técnicas de detecção de observações discrepantes, é proposto o método procura \\forward\", por Atkinson e Riani (2000), que é uma metodologia para detectar observações atípicas mascaradas. Neste trabalho, propomos o uso da influência local com procura \"forward\" na obtenção de observações mascaradas influentes considerando modelos de regressão linear.
publishDate 2015
dc.date.none.fl_str_mv 2015-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/104/104131/tde-19012017-112532/
url http://www.teses.usp.br/teses/disponiveis/104/104131/tde-19012017-112532/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257123407265792