Orbibundles, complex hyperbolic manifolds and geometry over algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/ |
Resumo: | This thesis consists of the original works Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101; as well as an analysis of the main results of each one of them. The first work introduced basic tools to deal with orbifolds and orbibundles from a diffeological viewpoint. The focus is on developing tools applicable to the construction of complex hyperbolic manifolds. In the second work, several new examples of disc bundles (over closed surfaces) admitting complex hyperbolic structures are constructed. They originate from disc orbibundles over spheres with three cone points and, as such, admit a non-rigid (deformable) complex hyperbolic structure. All the examples obtained support the Gromov-Lawson-Thurston conjecture. The latter establishes the theory of classic geometries over algebras beyond real numbers, complex numbers, and quaternions. We use these geometries to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. Finally, we present a natural geometric transition between such spaces and build a projective model for the geometry of the hyperbolic bidisc (the Riemannian product of two hyperbolic planes). |
id |
USP_d3fea3beef9090a73d4be4f43e89da1b |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-26072022-085204 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Orbibundles, complex hyperbolic manifolds and geometry over algebrasOrbibundles, variedades hiperbólicas complexas e geometria sobre álgebrasÁlgebras reaisComplex hyperbolic geometryDifeologiaDiffeologyDiscrete invariantsGeometria hiperbólica complexaInvariantes discretosOrbifoldsOrbifoldsReal algebrasThis thesis consists of the original works Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101; as well as an analysis of the main results of each one of them. The first work introduced basic tools to deal with orbifolds and orbibundles from a diffeological viewpoint. The focus is on developing tools applicable to the construction of complex hyperbolic manifolds. In the second work, several new examples of disc bundles (over closed surfaces) admitting complex hyperbolic structures are constructed. They originate from disc orbibundles over spheres with three cone points and, as such, admit a non-rigid (deformable) complex hyperbolic structure. All the examples obtained support the Gromov-Lawson-Thurston conjecture. The latter establishes the theory of classic geometries over algebras beyond real numbers, complex numbers, and quaternions. We use these geometries to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. Finally, we present a natural geometric transition between such spaces and build a projective model for the geometry of the hyperbolic bidisc (the Riemannian product of two hyperbolic planes).Esta tese consiste dos trabalhos originais Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101 bem como de uma análise dos principais resultados de cada um deles. O primeiro estabelece ferramentas básicas sobre orbifolds e orbibundles do ponto de vista da difeologia. O foco é desenvolver ferramentas a serem aplicadas à construção de variedades hiperbólicas complexas. No segundo trabalho, vários novos exemplos de fibrados de disco (sobre superfícies fechadas) com estruturas hiperbólicas complexas são construídos. Esses fibrados originam-se de orbibundles de discos sobre esferas com três pontos cônicos e, como tais, admitem estrutura hiperbólica complexa não-rígida (deformável). Todos os exemplos obtidos suportam a conjectura de Gromov-Lawson-Thurston. O último estabelece a teoria de geometrias clássicas para álgebras além dos números reais, complexos e quaternions. Utilizamos tais geometrias para descrever os espaços de geodésicas orientadas do plano hiperbólico, do plano Euclidiano e da 2-esfera redonda. Finalmente, apresentamos uma transição geométrica natural entre tais espaços e construímos um modelo projetivo para a geometria do bidisco hiperbólico (o produto Riemanniano de dois planos hiperbólicos).Biblioteca Digitais de Teses e Dissertações da USPFerreira, Carlos Henrique GrossiBotos, Hugo Cattarucci2022-05-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-26T12:00:41Zoai:teses.usp.br:tde-26072022-085204Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-26T12:00:41Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Orbibundles, complex hyperbolic manifolds and geometry over algebras Orbibundles, variedades hiperbólicas complexas e geometria sobre álgebras |
title |
Orbibundles, complex hyperbolic manifolds and geometry over algebras |
spellingShingle |
Orbibundles, complex hyperbolic manifolds and geometry over algebras Botos, Hugo Cattarucci Álgebras reais Complex hyperbolic geometry Difeologia Diffeology Discrete invariants Geometria hiperbólica complexa Invariantes discretos Orbifolds Orbifolds Real algebras |
title_short |
Orbibundles, complex hyperbolic manifolds and geometry over algebras |
title_full |
Orbibundles, complex hyperbolic manifolds and geometry over algebras |
title_fullStr |
Orbibundles, complex hyperbolic manifolds and geometry over algebras |
title_full_unstemmed |
Orbibundles, complex hyperbolic manifolds and geometry over algebras |
title_sort |
Orbibundles, complex hyperbolic manifolds and geometry over algebras |
author |
Botos, Hugo Cattarucci |
author_facet |
Botos, Hugo Cattarucci |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Carlos Henrique Grossi |
dc.contributor.author.fl_str_mv |
Botos, Hugo Cattarucci |
dc.subject.por.fl_str_mv |
Álgebras reais Complex hyperbolic geometry Difeologia Diffeology Discrete invariants Geometria hiperbólica complexa Invariantes discretos Orbifolds Orbifolds Real algebras |
topic |
Álgebras reais Complex hyperbolic geometry Difeologia Diffeology Discrete invariants Geometria hiperbólica complexa Invariantes discretos Orbifolds Orbifolds Real algebras |
description |
This thesis consists of the original works Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101; as well as an analysis of the main results of each one of them. The first work introduced basic tools to deal with orbifolds and orbibundles from a diffeological viewpoint. The focus is on developing tools applicable to the construction of complex hyperbolic manifolds. In the second work, several new examples of disc bundles (over closed surfaces) admitting complex hyperbolic structures are constructed. They originate from disc orbibundles over spheres with three cone points and, as such, admit a non-rigid (deformable) complex hyperbolic structure. All the examples obtained support the Gromov-Lawson-Thurston conjecture. The latter establishes the theory of classic geometries over algebras beyond real numbers, complex numbers, and quaternions. We use these geometries to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. Finally, we present a natural geometric transition between such spaces and build a projective model for the geometry of the hyperbolic bidisc (the Riemannian product of two hyperbolic planes). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257397352988672 |