Orbibundles, complex hyperbolic manifolds and geometry over algebras

Detalhes bibliográficos
Autor(a) principal: Botos, Hugo Cattarucci
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/
Resumo: This thesis consists of the original works Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101; as well as an analysis of the main results of each one of them. The first work introduced basic tools to deal with orbifolds and orbibundles from a diffeological viewpoint. The focus is on developing tools applicable to the construction of complex hyperbolic manifolds. In the second work, several new examples of disc bundles (over closed surfaces) admitting complex hyperbolic structures are constructed. They originate from disc orbibundles over spheres with three cone points and, as such, admit a non-rigid (deformable) complex hyperbolic structure. All the examples obtained support the Gromov-Lawson-Thurston conjecture. The latter establishes the theory of classic geometries over algebras beyond real numbers, complex numbers, and quaternions. We use these geometries to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. Finally, we present a natural geometric transition between such spaces and build a projective model for the geometry of the hyperbolic bidisc (the Riemannian product of two hyperbolic planes).
id USP_d3fea3beef9090a73d4be4f43e89da1b
oai_identifier_str oai:teses.usp.br:tde-26072022-085204
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Orbibundles, complex hyperbolic manifolds and geometry over algebrasOrbibundles, variedades hiperbólicas complexas e geometria sobre álgebrasÁlgebras reaisComplex hyperbolic geometryDifeologiaDiffeologyDiscrete invariantsGeometria hiperbólica complexaInvariantes discretosOrbifoldsOrbifoldsReal algebrasThis thesis consists of the original works Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101; as well as an analysis of the main results of each one of them. The first work introduced basic tools to deal with orbifolds and orbibundles from a diffeological viewpoint. The focus is on developing tools applicable to the construction of complex hyperbolic manifolds. In the second work, several new examples of disc bundles (over closed surfaces) admitting complex hyperbolic structures are constructed. They originate from disc orbibundles over spheres with three cone points and, as such, admit a non-rigid (deformable) complex hyperbolic structure. All the examples obtained support the Gromov-Lawson-Thurston conjecture. The latter establishes the theory of classic geometries over algebras beyond real numbers, complex numbers, and quaternions. We use these geometries to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. Finally, we present a natural geometric transition between such spaces and build a projective model for the geometry of the hyperbolic bidisc (the Riemannian product of two hyperbolic planes).Esta tese consiste dos trabalhos originais Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101 bem como de uma análise dos principais resultados de cada um deles. O primeiro estabelece ferramentas básicas sobre orbifolds e orbibundles do ponto de vista da difeologia. O foco é desenvolver ferramentas a serem aplicadas à construção de variedades hiperbólicas complexas. No segundo trabalho, vários novos exemplos de fibrados de disco (sobre superfícies fechadas) com estruturas hiperbólicas complexas são construídos. Esses fibrados originam-se de orbibundles de discos sobre esferas com três pontos cônicos e, como tais, admitem estrutura hiperbólica complexa não-rígida (deformável). Todos os exemplos obtidos suportam a conjectura de Gromov-Lawson-Thurston. O último estabelece a teoria de geometrias clássicas para álgebras além dos números reais, complexos e quaternions. Utilizamos tais geometrias para descrever os espaços de geodésicas orientadas do plano hiperbólico, do plano Euclidiano e da 2-esfera redonda. Finalmente, apresentamos uma transição geométrica natural entre tais espaços e construímos um modelo projetivo para a geometria do bidisco hiperbólico (o produto Riemanniano de dois planos hiperbólicos).Biblioteca Digitais de Teses e Dissertações da USPFerreira, Carlos Henrique GrossiBotos, Hugo Cattarucci2022-05-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-07-26T12:00:41Zoai:teses.usp.br:tde-26072022-085204Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-07-26T12:00:41Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Orbibundles, complex hyperbolic manifolds and geometry over algebras
Orbibundles, variedades hiperbólicas complexas e geometria sobre álgebras
title Orbibundles, complex hyperbolic manifolds and geometry over algebras
spellingShingle Orbibundles, complex hyperbolic manifolds and geometry over algebras
Botos, Hugo Cattarucci
Álgebras reais
Complex hyperbolic geometry
Difeologia
Diffeology
Discrete invariants
Geometria hiperbólica complexa
Invariantes discretos
Orbifolds
Orbifolds
Real algebras
title_short Orbibundles, complex hyperbolic manifolds and geometry over algebras
title_full Orbibundles, complex hyperbolic manifolds and geometry over algebras
title_fullStr Orbibundles, complex hyperbolic manifolds and geometry over algebras
title_full_unstemmed Orbibundles, complex hyperbolic manifolds and geometry over algebras
title_sort Orbibundles, complex hyperbolic manifolds and geometry over algebras
author Botos, Hugo Cattarucci
author_facet Botos, Hugo Cattarucci
author_role author
dc.contributor.none.fl_str_mv Ferreira, Carlos Henrique Grossi
dc.contributor.author.fl_str_mv Botos, Hugo Cattarucci
dc.subject.por.fl_str_mv Álgebras reais
Complex hyperbolic geometry
Difeologia
Diffeology
Discrete invariants
Geometria hiperbólica complexa
Invariantes discretos
Orbifolds
Orbifolds
Real algebras
topic Álgebras reais
Complex hyperbolic geometry
Difeologia
Diffeology
Discrete invariants
Geometria hiperbólica complexa
Invariantes discretos
Orbifolds
Orbifolds
Real algebras
description This thesis consists of the original works Hugo C. Botós, Orbifolds and orbibundles in complex hyperbolic geometry, arXiv:2011.09372; Hugo C. Botós, Carlos H. Grossi. Quotients of the holomorphic 2-ball and the turnover, arXiv:2109.08753; Hugo C. Botós, Geometry over algebras, arXiv:2203.05101; as well as an analysis of the main results of each one of them. The first work introduced basic tools to deal with orbifolds and orbibundles from a diffeological viewpoint. The focus is on developing tools applicable to the construction of complex hyperbolic manifolds. In the second work, several new examples of disc bundles (over closed surfaces) admitting complex hyperbolic structures are constructed. They originate from disc orbibundles over spheres with three cone points and, as such, admit a non-rigid (deformable) complex hyperbolic structure. All the examples obtained support the Gromov-Lawson-Thurston conjecture. The latter establishes the theory of classic geometries over algebras beyond real numbers, complex numbers, and quaternions. We use these geometries to describe the spaces of oriented geodesics in the hyperbolic plane, the Euclidean plane, and the round 2-sphere. Finally, we present a natural geometric transition between such spaces and build a projective model for the geometry of the hyperbolic bidisc (the Riemannian product of two hyperbolic planes).
publishDate 2022
dc.date.none.fl_str_mv 2022-05-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/
url https://www.teses.usp.br/teses/disponiveis/55/55135/tde-26072022-085204/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257397352988672