Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04042011-094122/ |
Resumo: | A dinâmica da equação diferencial com retardo x 2 pontos + 2ax ponto + bx = f(x ), para a função não linear f(x) = tanh(x), foi analisada como função dos parâmetros a, b, e do retardo , onde x = x(t ). Esse modelo descreve um oscilador harmônico amortecido sujeito a retroalimentação com retardo . Nesse estudo, examinamos os casos de retroalimentação negativa ( < 0) e positiva ( > 0). Usamos o método de passos para mostrar a propriedade de suavização da solução, da equação diferencial não linear com retardo, com o crescimento de t. Fizemos a análise da estabilidade local, construímos as cartas de estabilidade no espaço de parâmetros, e mostramos que o espectro de autovalores é discreto e, no máximo, enumerável. Foram construídos diagramas de bifurcação que exibiram a ocorrência da bifurcação de Hopf supercrítica, da bifurcação de forquilha supercrítica, e da bifurcação de Hopf dupla. Para alguns pontos de bifurcação de Hopf dupla, ressonantes e não ressonantes, foi calculada numericamente a série temporal, construído o espaço de fase e gerado o mapa de primeiro retorno para uma dada seção de Poincaré. Por fim, realizamos a discretização da equação do oscilador e fizemos uma breve análise da dinâmica da equação não linear de diferenças resultante. |
id |
USP_d44adcbc0ae172ec3ddf011d4efeeb79 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-04042011-094122 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardadaStudy of teh dynamics of the damped oscillator with delayed feedbackCaosChaosDelay differential equationsDynamical systemsEquações diferenciais com retardamentoEquações diferenciais funcionaisFísica matemáticaFunctional differential equationsMathematical physicsSistemas dinâmicosA dinâmica da equação diferencial com retardo x 2 pontos + 2ax ponto + bx = f(x ), para a função não linear f(x) = tanh(x), foi analisada como função dos parâmetros a, b, e do retardo , onde x = x(t ). Esse modelo descreve um oscilador harmônico amortecido sujeito a retroalimentação com retardo . Nesse estudo, examinamos os casos de retroalimentação negativa ( < 0) e positiva ( > 0). Usamos o método de passos para mostrar a propriedade de suavização da solução, da equação diferencial não linear com retardo, com o crescimento de t. Fizemos a análise da estabilidade local, construímos as cartas de estabilidade no espaço de parâmetros, e mostramos que o espectro de autovalores é discreto e, no máximo, enumerável. Foram construídos diagramas de bifurcação que exibiram a ocorrência da bifurcação de Hopf supercrítica, da bifurcação de forquilha supercrítica, e da bifurcação de Hopf dupla. Para alguns pontos de bifurcação de Hopf dupla, ressonantes e não ressonantes, foi calculada numericamente a série temporal, construído o espaço de fase e gerado o mapa de primeiro retorno para uma dada seção de Poincaré. Por fim, realizamos a discretização da equação do oscilador e fizemos uma breve análise da dinâmica da equação não linear de diferenças resultante.The dynamics of the delay differential equation x 2 pontos + 2ax ponto + bx = f(x ), for the nonlinear function f(x) = tanh(x), has been analyzed as a function of the parameters a, b, and the delay , where x = x(t ). This model describes a damped harmonic oscillator subject to feedback with delay . Here, we have examined the cases of negative feedback (< 0) and positive feedback ( > 0). The method of steps have been used to show the property of solutions smoothing, for the nonlinear delay differential equation, for the increasing t. We have analyzed the local stability, made the stability charts, and showed that the spectrum of eigenvalues is discrete and at most enumerable. We have constructed the bifurcation diagrams that showed the occurrence of supercritical Hopf bifurcation, the supercritical pitchfork bifurcation and double Hopf bifurcation. For some points of resonant and non-resonant double Hopf bifurcation we have numerically calculated the time series, produced the phase space, and generated the first return map for a given Poincaré section. Finally, we have performed a discretization of the equation and made a brief analysis of the dynamics of the resulting nonlinear difference equation.Biblioteca Digitais de Teses e Dissertações da USPMalta, Coraci PereiraSouza, Daniel Câmara de2011-02-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43134/tde-04042011-094122/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-04042011-094122Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada Study of teh dynamics of the damped oscillator with delayed feedback |
title |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada |
spellingShingle |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada Souza, Daniel Câmara de Caos Chaos Delay differential equations Dynamical systems Equações diferenciais com retardamento Equações diferenciais funcionais Física matemática Functional differential equations Mathematical physics Sistemas dinâmicos |
title_short |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada |
title_full |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada |
title_fullStr |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada |
title_full_unstemmed |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada |
title_sort |
Estudo da dinâmica de um oscilador amortecido com retroalimentação retardada |
author |
Souza, Daniel Câmara de |
author_facet |
Souza, Daniel Câmara de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Malta, Coraci Pereira |
dc.contributor.author.fl_str_mv |
Souza, Daniel Câmara de |
dc.subject.por.fl_str_mv |
Caos Chaos Delay differential equations Dynamical systems Equações diferenciais com retardamento Equações diferenciais funcionais Física matemática Functional differential equations Mathematical physics Sistemas dinâmicos |
topic |
Caos Chaos Delay differential equations Dynamical systems Equações diferenciais com retardamento Equações diferenciais funcionais Física matemática Functional differential equations Mathematical physics Sistemas dinâmicos |
description |
A dinâmica da equação diferencial com retardo x 2 pontos + 2ax ponto + bx = f(x ), para a função não linear f(x) = tanh(x), foi analisada como função dos parâmetros a, b, e do retardo , onde x = x(t ). Esse modelo descreve um oscilador harmônico amortecido sujeito a retroalimentação com retardo . Nesse estudo, examinamos os casos de retroalimentação negativa ( < 0) e positiva ( > 0). Usamos o método de passos para mostrar a propriedade de suavização da solução, da equação diferencial não linear com retardo, com o crescimento de t. Fizemos a análise da estabilidade local, construímos as cartas de estabilidade no espaço de parâmetros, e mostramos que o espectro de autovalores é discreto e, no máximo, enumerável. Foram construídos diagramas de bifurcação que exibiram a ocorrência da bifurcação de Hopf supercrítica, da bifurcação de forquilha supercrítica, e da bifurcação de Hopf dupla. Para alguns pontos de bifurcação de Hopf dupla, ressonantes e não ressonantes, foi calculada numericamente a série temporal, construído o espaço de fase e gerado o mapa de primeiro retorno para uma dada seção de Poincaré. Por fim, realizamos a discretização da equação do oscilador e fizemos uma breve análise da dinâmica da equação não linear de diferenças resultante. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04042011-094122/ |
url |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04042011-094122/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256652990906368 |