Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade

Detalhes bibliográficos
Autor(a) principal: Moura, Paulo Bittencourt
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-01082017-193924/
Resumo: Provedores de serviços de nuvem disponibilizam uma interface através da qual seus clientes podem solicitar, usar e liberar estes recursos. Muitos serviços implantados em nuvens incluem um componente para gerenciamento automatizado de recursos, encarregado de requisitar e librar recursos sem intervenção humana, à medida que a demanda varia. A técnica padrão para o gerenciamento de recursos se baseia em regras sobre utilização de recursos. Quando ocorre um aumento significativo na carga em um curto espaço de tempo, o sistema pode levar vários ciclos de monitoramento e ação até alcançar uma configuração adequada. Neste período, o sistema permanece sobrecarregado. Nesta pesquisa, investigamos como compreender adequadamente os efeitos da variação na disponibilidade de recursos sobre a capacidade de um sistema e como aplicar este conhecimento para melhorar sua elasticidade. Propomos uma estratégia que abrange avaliação da escalabilidade do sistema, visando sua modelagem, e a aplicação deste modelo nas estimativas de necessidade por recursos com base na carga de trabalho. Introduzimos um arcabouço para automatizar a avaliação de escalabilidade de sistemas distribuídos e efetuamos uma validação experimental da estratégia proposta. Comparamos a alocação de recursos e o desempenho obtido usando nossa estratégia e estratégia baseada em regras, fazendo a reprodução de carga real e usando cargas sintéticas. De forma geral, nossa proposta foi capaz de prover melhor desempenho, ao ponto que o uso de recursos cresceu, e consequentemente o custo de utilização. No entanto, a melhora de desempenho foi mais significativa que o aumento dos custos.
id USP_d6bbe1d47e61ac048aa2a6b343828278
oai_identifier_str oai:teses.usp.br:tde-01082017-193924
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidadeDynamic resource allocation for elastic systems based on scalability modelingCloud computingComputação em nuvemElasticidadeElasticityEscalabilidadeModelagem de EscalabilidadeScalabilityScalability modelingScalability testingTeste de escalabilidadeProvedores de serviços de nuvem disponibilizam uma interface através da qual seus clientes podem solicitar, usar e liberar estes recursos. Muitos serviços implantados em nuvens incluem um componente para gerenciamento automatizado de recursos, encarregado de requisitar e librar recursos sem intervenção humana, à medida que a demanda varia. A técnica padrão para o gerenciamento de recursos se baseia em regras sobre utilização de recursos. Quando ocorre um aumento significativo na carga em um curto espaço de tempo, o sistema pode levar vários ciclos de monitoramento e ação até alcançar uma configuração adequada. Neste período, o sistema permanece sobrecarregado. Nesta pesquisa, investigamos como compreender adequadamente os efeitos da variação na disponibilidade de recursos sobre a capacidade de um sistema e como aplicar este conhecimento para melhorar sua elasticidade. Propomos uma estratégia que abrange avaliação da escalabilidade do sistema, visando sua modelagem, e a aplicação deste modelo nas estimativas de necessidade por recursos com base na carga de trabalho. Introduzimos um arcabouço para automatizar a avaliação de escalabilidade de sistemas distribuídos e efetuamos uma validação experimental da estratégia proposta. Comparamos a alocação de recursos e o desempenho obtido usando nossa estratégia e estratégia baseada em regras, fazendo a reprodução de carga real e usando cargas sintéticas. De forma geral, nossa proposta foi capaz de prover melhor desempenho, ao ponto que o uso de recursos cresceu, e consequentemente o custo de utilização. No entanto, a melhora de desempenho foi mais significativa que o aumento dos custos.Cloud computing is a new paradigm in which virtual resources are leased in the short-term. Cloud providers publish an API through which users can request, use, and release those resources. Thus, a properly architected system can be quickly deployed and their infrastructure can be quickly updated to better accommodate workload fluctuations and limit expenses. Many services running in clouds comprise an automated resource management unit, which is in charge of requesting and releasing resources without human intervention, as demand changes. The rule based approach, commonlly applied to automate the resource management, is especially problematic in cases of load surge. When of a quick and drastic increase of the workload, the system may take many cycles of infrastructural redimensioning until achieve an adequate state. In this case, the system remains overloaded during all those cycles, affecting user experience. In this research, we investigate how we can properly understand what are the effects, in system capacity, incurred by variations in resource availability, and how this knowledge can be applied to improve elasticity. We propose a strategy that comprises performing scalability tests to model scalability and apply the model to estimate resource need, according to the arriving workload. We introduce a framework for automated scalability evaluation of distributed systems and experimentally evaluate the proposed strategy. We compare the allocation and performance obtained using our strategy with a rule based strategy in a trace-driven simulation and with synthetic workloads. We also evaluate six variations of the model-based approach. Generally, our approach can deliver better performance, while increasing resource allocation and, consequently, cost. The extent of the performance improvement is larger than the cost increment, though.Biblioteca Digitais de Teses e Dissertações da USPKon, FabioMoura, Paulo Bittencourt2017-03-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45134/tde-01082017-193924/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-01082017-193924Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
Dynamic resource allocation for elastic systems based on scalability modeling
title Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
spellingShingle Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
Moura, Paulo Bittencourt
Cloud computing
Computação em nuvem
Elasticidade
Elasticity
Escalabilidade
Modelagem de Escalabilidade
Scalability
Scalability modeling
Scalability testing
Teste de escalabilidade
title_short Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
title_full Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
title_fullStr Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
title_full_unstemmed Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
title_sort Alocação dinâmica de recursos em sistemas elásticos baseada em modelos de escalabilidade
author Moura, Paulo Bittencourt
author_facet Moura, Paulo Bittencourt
author_role author
dc.contributor.none.fl_str_mv Kon, Fabio
dc.contributor.author.fl_str_mv Moura, Paulo Bittencourt
dc.subject.por.fl_str_mv Cloud computing
Computação em nuvem
Elasticidade
Elasticity
Escalabilidade
Modelagem de Escalabilidade
Scalability
Scalability modeling
Scalability testing
Teste de escalabilidade
topic Cloud computing
Computação em nuvem
Elasticidade
Elasticity
Escalabilidade
Modelagem de Escalabilidade
Scalability
Scalability modeling
Scalability testing
Teste de escalabilidade
description Provedores de serviços de nuvem disponibilizam uma interface através da qual seus clientes podem solicitar, usar e liberar estes recursos. Muitos serviços implantados em nuvens incluem um componente para gerenciamento automatizado de recursos, encarregado de requisitar e librar recursos sem intervenção humana, à medida que a demanda varia. A técnica padrão para o gerenciamento de recursos se baseia em regras sobre utilização de recursos. Quando ocorre um aumento significativo na carga em um curto espaço de tempo, o sistema pode levar vários ciclos de monitoramento e ação até alcançar uma configuração adequada. Neste período, o sistema permanece sobrecarregado. Nesta pesquisa, investigamos como compreender adequadamente os efeitos da variação na disponibilidade de recursos sobre a capacidade de um sistema e como aplicar este conhecimento para melhorar sua elasticidade. Propomos uma estratégia que abrange avaliação da escalabilidade do sistema, visando sua modelagem, e a aplicação deste modelo nas estimativas de necessidade por recursos com base na carga de trabalho. Introduzimos um arcabouço para automatizar a avaliação de escalabilidade de sistemas distribuídos e efetuamos uma validação experimental da estratégia proposta. Comparamos a alocação de recursos e o desempenho obtido usando nossa estratégia e estratégia baseada em regras, fazendo a reprodução de carga real e usando cargas sintéticas. De forma geral, nossa proposta foi capaz de prover melhor desempenho, ao ponto que o uso de recursos cresceu, e consequentemente o custo de utilização. No entanto, a melhora de desempenho foi mais significativa que o aumento dos custos.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45134/tde-01082017-193924/
url http://www.teses.usp.br/teses/disponiveis/45/45134/tde-01082017-193924/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256583095975936