Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações

Detalhes bibliográficos
Autor(a) principal: Santos, Lucimary Afonso dos
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-13092011-095857/
Resumo: A distribuição simplex, proposta por Barndor-Nielsen e Jørgensen (1991) é útil para a modelagem de dados contínuos no intervalo (0,1). Nesse trabalho, desenvolve-se o modelo de regressão simplex considerando-se ´ = h(X; ¯), sendo h(:; :) uma função arbitr ária. Denem-se os resíduos para o modelo considerado e obtêm-se correções assintóticas para resíduos do tipo Ri. A primeira correção proposta baseou-se na obtenção da expressão assintótica para a densidade dos resíduos de Pearson, corrigidos até ordem O(n¡1). Esses resíduos foram denidos de forma a terem a mesma distribuição dos resíduos verdadeiros de Pearson. Estudos de simulação mostraram que a distribuição empírica dos resíduos corrigidos pela densidade encontra-se mais próxima da distribuição dos verdadeiros resíduos de Pearson do que para o resíduo não corrigido de Pearson. A segunda correção proposta considera o método dos momentos. Geralmente, E(Ri) e Var(Ri) são diferentes de zero e um, respectivamente, por termos de ordem O(n¡1). Usando-se os resultados de Cox e Snell (1968), obtiveram-se as expressões aproximadas de ordem O(n¡1) para E(Ri) e Var(Ri). Um estudo de simulação está sendo realizado para avaliação da técnica proposta. A técnica desenvolvida no primeiro estudo, foi aplicada a dois conjuntos de dados, sendo o primeiro deles, dados sobre oxidação de amônia, considerando-se preditor linear e o outro sobre porcentagem de massa seca (MS) em grãos de milho, considerando-se preditor linear e não linear. Os resultados obtidos para os dados de oxidação de amônia, indicaram que o modelo com preditor linear está bem ajustado aos dados, considerando-se a exclusão de alguns possíveis pontos inuentes, sendo que a correção proposta, para a densidade dos resíduos, apresenta os melhores resultados. Observando-se os resultados para os dados de massa seca, os melhores resultados foram obtidos, considerando-se um dos modelos com preditor não linear.
id USP_d7220e3f83874e0d621a786c3cd4e1b0
oai_identifier_str oai:teses.usp.br:tde-13092011-095857
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicaçõesSimplex regression models:corrected Pearson residuals and applicationsAnálise estatística de dadosDistribuições (Probabilidade)Distributions (Probability)Linear Regression.Mathematical ModelsModelos matemáticosRegressão linear.ResidualsResíduosStatistical Data AnalysisA distribuição simplex, proposta por Barndor-Nielsen e Jørgensen (1991) é útil para a modelagem de dados contínuos no intervalo (0,1). Nesse trabalho, desenvolve-se o modelo de regressão simplex considerando-se ´ = h(X; ¯), sendo h(:; :) uma função arbitr ária. Denem-se os resíduos para o modelo considerado e obtêm-se correções assintóticas para resíduos do tipo Ri. A primeira correção proposta baseou-se na obtenção da expressão assintótica para a densidade dos resíduos de Pearson, corrigidos até ordem O(n¡1). Esses resíduos foram denidos de forma a terem a mesma distribuição dos resíduos verdadeiros de Pearson. Estudos de simulação mostraram que a distribuição empírica dos resíduos corrigidos pela densidade encontra-se mais próxima da distribuição dos verdadeiros resíduos de Pearson do que para o resíduo não corrigido de Pearson. A segunda correção proposta considera o método dos momentos. Geralmente, E(Ri) e Var(Ri) são diferentes de zero e um, respectivamente, por termos de ordem O(n¡1). Usando-se os resultados de Cox e Snell (1968), obtiveram-se as expressões aproximadas de ordem O(n¡1) para E(Ri) e Var(Ri). Um estudo de simulação está sendo realizado para avaliação da técnica proposta. A técnica desenvolvida no primeiro estudo, foi aplicada a dois conjuntos de dados, sendo o primeiro deles, dados sobre oxidação de amônia, considerando-se preditor linear e o outro sobre porcentagem de massa seca (MS) em grãos de milho, considerando-se preditor linear e não linear. Os resultados obtidos para os dados de oxidação de amônia, indicaram que o modelo com preditor linear está bem ajustado aos dados, considerando-se a exclusão de alguns possíveis pontos inuentes, sendo que a correção proposta, para a densidade dos resíduos, apresenta os melhores resultados. Observando-se os resultados para os dados de massa seca, os melhores resultados foram obtidos, considerando-se um dos modelos com preditor não linear.The simplex distribution, proposed by Barndor-Nielsen e Jørgensen (1991) is useful for modeling continuous data in the (0,1) interval. In this work, we developed the simplex regression model, considering ´ = h(X; ¯), where h(:; :) is an arbitrary function. We dened the residuals to this model and obtained asymptotic corrections to residuals of the type Ri. The rst correction proposed, was based in obtaining the asymptotic expression for the density of Pearson residuals, corrected to order O(n¡1). These residuals were dened in order to have the same distribution of true Pearson residuals. Simulation studies showed that the empirical distribution of the modied residuals is closer to the distribution of the true Pearson residuals than the unmodied Pearson residuals. The second one, considers the method of moments. Generally E(Ri) and Var(Ri) are dierent from zero and one, respectively, by terms of order O(n¡1). Using the results of Cox and Snell (1968), we obtained the approximate expressions of order O(n¡1) for E(Ri) and Var(Ri). A simulation study is being conducted to evaluate the proposed technique. We applied the techniques in two data sets, the rst one, is a dataset of ammonia oxidation, considering linear predictor and the other one was the percentage of dry matter in maize, considering linear predictor and nonlinear. The results obtained for the oxidation ammonia data indicated that the model considering linear predictor, tted well to the data, if we consider the exclusion of some possible inuential points. The proposed correction for the density of Pearson residuals, showed better results. Observing the results for the dry matter data, the best results were obtained for a model with a specied nonlinear predictor.Biblioteca Digitais de Teses e Dissertações da USPDemetrio, Clarice Garcia BorgesSantos, Lucimary Afonso dos2011-09-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-13092011-095857/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:30Zoai:teses.usp.br:tde-13092011-095857Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
Simplex regression models:corrected Pearson residuals and applications
title Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
spellingShingle Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
Santos, Lucimary Afonso dos
Análise estatística de dados
Distribuições (Probabilidade)
Distributions (Probability)
Linear Regression.
Mathematical Models
Modelos matemáticos
Regressão linear.
Residuals
Resíduos
Statistical Data Analysis
title_short Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
title_full Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
title_fullStr Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
title_full_unstemmed Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
title_sort Modelos de regressão simplex: resíduos de Pearson corrigidos e aplicações
author Santos, Lucimary Afonso dos
author_facet Santos, Lucimary Afonso dos
author_role author
dc.contributor.none.fl_str_mv Demetrio, Clarice Garcia Borges
dc.contributor.author.fl_str_mv Santos, Lucimary Afonso dos
dc.subject.por.fl_str_mv Análise estatística de dados
Distribuições (Probabilidade)
Distributions (Probability)
Linear Regression.
Mathematical Models
Modelos matemáticos
Regressão linear.
Residuals
Resíduos
Statistical Data Analysis
topic Análise estatística de dados
Distribuições (Probabilidade)
Distributions (Probability)
Linear Regression.
Mathematical Models
Modelos matemáticos
Regressão linear.
Residuals
Resíduos
Statistical Data Analysis
description A distribuição simplex, proposta por Barndor-Nielsen e Jørgensen (1991) é útil para a modelagem de dados contínuos no intervalo (0,1). Nesse trabalho, desenvolve-se o modelo de regressão simplex considerando-se ´ = h(X; ¯), sendo h(:; :) uma função arbitr ária. Denem-se os resíduos para o modelo considerado e obtêm-se correções assintóticas para resíduos do tipo Ri. A primeira correção proposta baseou-se na obtenção da expressão assintótica para a densidade dos resíduos de Pearson, corrigidos até ordem O(n¡1). Esses resíduos foram denidos de forma a terem a mesma distribuição dos resíduos verdadeiros de Pearson. Estudos de simulação mostraram que a distribuição empírica dos resíduos corrigidos pela densidade encontra-se mais próxima da distribuição dos verdadeiros resíduos de Pearson do que para o resíduo não corrigido de Pearson. A segunda correção proposta considera o método dos momentos. Geralmente, E(Ri) e Var(Ri) são diferentes de zero e um, respectivamente, por termos de ordem O(n¡1). Usando-se os resultados de Cox e Snell (1968), obtiveram-se as expressões aproximadas de ordem O(n¡1) para E(Ri) e Var(Ri). Um estudo de simulação está sendo realizado para avaliação da técnica proposta. A técnica desenvolvida no primeiro estudo, foi aplicada a dois conjuntos de dados, sendo o primeiro deles, dados sobre oxidação de amônia, considerando-se preditor linear e o outro sobre porcentagem de massa seca (MS) em grãos de milho, considerando-se preditor linear e não linear. Os resultados obtidos para os dados de oxidação de amônia, indicaram que o modelo com preditor linear está bem ajustado aos dados, considerando-se a exclusão de alguns possíveis pontos inuentes, sendo que a correção proposta, para a densidade dos resíduos, apresenta os melhores resultados. Observando-se os resultados para os dados de massa seca, os melhores resultados foram obtidos, considerando-se um dos modelos com preditor não linear.
publishDate 2011
dc.date.none.fl_str_mv 2011-09-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-13092011-095857/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-13092011-095857/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256943523004416