Incorporating clustering techniques into GAMLSS

Detalhes bibliográficos
Autor(a) principal: Ramires, Thiago G.
Data de Publicação: 2021
Outros Autores: Nakamura, Luiz R., Righetto, Ana J., Konrath, Andréa C., Pereira, Carlos A. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/50665
Resumo: A method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable.
id UFLA_42872229ff1d816e85e9c26be86df225
oai_identifier_str oai:localhost:1/50665
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Incorporating clustering techniques into GAMLSSBimodal distributionsMixture modelsRegression modelsStatistical learningDistribuições bimodaisModelos mistosModelos de regressãoAprendizado estatísticoA method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable.MDPI2022-07-20T21:04:13Z2022-07-20T21:04:13Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfRAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053.http://repositorio.ufla.br/jspui/handle/1/50665Statsreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessRamires, Thiago G.Nakamura, Luiz R.Righetto, Ana J.Konrath, Andréa C.Pereira, Carlos A. B.eng2022-07-20T21:04:14Zoai:localhost:1/50665Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-07-20T21:04:14Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Incorporating clustering techniques into GAMLSS
title Incorporating clustering techniques into GAMLSS
spellingShingle Incorporating clustering techniques into GAMLSS
Ramires, Thiago G.
Bimodal distributions
Mixture models
Regression models
Statistical learning
Distribuições bimodais
Modelos mistos
Modelos de regressão
Aprendizado estatístico
title_short Incorporating clustering techniques into GAMLSS
title_full Incorporating clustering techniques into GAMLSS
title_fullStr Incorporating clustering techniques into GAMLSS
title_full_unstemmed Incorporating clustering techniques into GAMLSS
title_sort Incorporating clustering techniques into GAMLSS
author Ramires, Thiago G.
author_facet Ramires, Thiago G.
Nakamura, Luiz R.
Righetto, Ana J.
Konrath, Andréa C.
Pereira, Carlos A. B.
author_role author
author2 Nakamura, Luiz R.
Righetto, Ana J.
Konrath, Andréa C.
Pereira, Carlos A. B.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ramires, Thiago G.
Nakamura, Luiz R.
Righetto, Ana J.
Konrath, Andréa C.
Pereira, Carlos A. B.
dc.subject.por.fl_str_mv Bimodal distributions
Mixture models
Regression models
Statistical learning
Distribuições bimodais
Modelos mistos
Modelos de regressão
Aprendizado estatístico
topic Bimodal distributions
Mixture models
Regression models
Statistical learning
Distribuições bimodais
Modelos mistos
Modelos de regressão
Aprendizado estatístico
description A method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable.
publishDate 2021
dc.date.none.fl_str_mv 2021
2022-07-20T21:04:13Z
2022-07-20T21:04:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv RAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053.
http://repositorio.ufla.br/jspui/handle/1/50665
identifier_str_mv RAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053.
url http://repositorio.ufla.br/jspui/handle/1/50665
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv Stats
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439027499696128