Incorporating clustering techniques into GAMLSS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/50665 |
Resumo: | A method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable. |
id |
UFLA_42872229ff1d816e85e9c26be86df225 |
---|---|
oai_identifier_str |
oai:localhost:1/50665 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Incorporating clustering techniques into GAMLSSBimodal distributionsMixture modelsRegression modelsStatistical learningDistribuições bimodaisModelos mistosModelos de regressãoAprendizado estatísticoA method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable.MDPI2022-07-20T21:04:13Z2022-07-20T21:04:13Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfRAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053.http://repositorio.ufla.br/jspui/handle/1/50665Statsreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessRamires, Thiago G.Nakamura, Luiz R.Righetto, Ana J.Konrath, Andréa C.Pereira, Carlos A. B.eng2022-07-20T21:04:14Zoai:localhost:1/50665Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-07-20T21:04:14Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Incorporating clustering techniques into GAMLSS |
title |
Incorporating clustering techniques into GAMLSS |
spellingShingle |
Incorporating clustering techniques into GAMLSS Ramires, Thiago G. Bimodal distributions Mixture models Regression models Statistical learning Distribuições bimodais Modelos mistos Modelos de regressão Aprendizado estatístico |
title_short |
Incorporating clustering techniques into GAMLSS |
title_full |
Incorporating clustering techniques into GAMLSS |
title_fullStr |
Incorporating clustering techniques into GAMLSS |
title_full_unstemmed |
Incorporating clustering techniques into GAMLSS |
title_sort |
Incorporating clustering techniques into GAMLSS |
author |
Ramires, Thiago G. |
author_facet |
Ramires, Thiago G. Nakamura, Luiz R. Righetto, Ana J. Konrath, Andréa C. Pereira, Carlos A. B. |
author_role |
author |
author2 |
Nakamura, Luiz R. Righetto, Ana J. Konrath, Andréa C. Pereira, Carlos A. B. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ramires, Thiago G. Nakamura, Luiz R. Righetto, Ana J. Konrath, Andréa C. Pereira, Carlos A. B. |
dc.subject.por.fl_str_mv |
Bimodal distributions Mixture models Regression models Statistical learning Distribuições bimodais Modelos mistos Modelos de regressão Aprendizado estatístico |
topic |
Bimodal distributions Mixture models Regression models Statistical learning Distribuições bimodais Modelos mistos Modelos de regressão Aprendizado estatístico |
description |
A method for statistical analysis of multimodal and/or highly distorted data is presented. The new methodology combines different clustering methods with the GAMLSS (generalized additive models for location, scale, and shape) framework, and is therefore called c-GAMLSS, for “clustering GAMLSS. ” In this new extended structure, a latent variable (cluster) is created to explain the response-variable (target). Any and all parameters of the distribution for the response variable can also be modeled by functions of the new covariate added to other available resources (features). The method of selecting resources to be used is carried out in stages, a step-based method. A simulation study considering multiple scenarios is presented to compare the c-GAMLSS method with existing Gaussian mixture models. We show by means of four different data applications that in cases where other authentic explanatory variables are or are not available, the c-GAMLSS structure outperforms mixture models, some recently developed complex distributions, cluster-weighted models, and a mixture-of-experts model. Even though we use simple distributions in our examples, other more sophisticated distributions can be used to explain the response variable. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2022-07-20T21:04:13Z 2022-07-20T21:04:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
RAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053. http://repositorio.ufla.br/jspui/handle/1/50665 |
identifier_str_mv |
RAMIRES, T. G. et al. Incorporating clustering techniques into GAMLSS. Stats, [S. l.], v. 4, n. 4, p. 916-930, 2021. DOI: 10.3390/stats4040053. |
url |
http://repositorio.ufla.br/jspui/handle/1/50665 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Stats reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439027499696128 |