Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.

Detalhes bibliográficos
Autor(a) principal: Alegro, Maryana de Carvalho
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-11082009-170102/
Resumo: As imagens por ressonância magnéticas não indispensáveis no diagnóstico e tratamento de tumores do encéfalo devido ao seu alto grau de detalhamento anatômico. A tarefa de segmenta¸cão da região tumoral, nestas, permite uma análise quantitativa mais precisa, viabilizando um melhor acompanhamento da evolução/regressão da doença. Porém, a realização manual de tal trabalho é cansativa e apresenta diversas desvantagens que a tornam proibitiva, fazendo com que nao haja muitos médicos dispostos a realizá-la rotineiramente. Neste trabalho é proposto um sistema para segmenta¸cão automática de tumores do encéfalo. O sistema emprega parâmetros de textura de naturezas diversas, como estatísticos, baseados em modelo, e baseados em transformada, os quais são extraídos de diferentes tipos de imagem comuns à pratica médica (T1, T1 com contraste e FLAIR). As técnicas de análise de textura são capazes de detectar alterações mínimas nos tecidos, às vezes imperceptíveis à visão humana, fato que motiva sua adoção; e podem ser complementadas por informações adicionais como valores de intensidade. O sistema proposto conta com quatro etapas básicas: pré-processamento, extração de características, segmentação e pós-processamento; e baseia-se no uso de uma máquina de vetor de suporte para classificação dos pixeis. Os resultados obtidos mostram que o sistema apresenta uma taxa média de acerto elevada, comparável aos resultados encontrados em trabalhos relacionados, sendo capaz de localizar e delimitar a região tumoral sem necessidade de interação com o usuário. A quantificação dos resultados foi realizada utilizando-se métricas de artigos encontrados na literatura.
id USP_da6c2c90d71f11df600b991db64b6ebf
oai_identifier_str oai:teses.usp.br:tde-11082009-170102
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.Brain tumor segmentation in magnetic resonance images based on texture information.Digital image processingImagem por ressonância magnéticaMagnetic resonance imageNeoplasias do sistema nervosoNeoplasm of the nervous systemProcessamento digital de imagensTextura (avaliação)Texture (evaluation)As imagens por ressonância magnéticas não indispensáveis no diagnóstico e tratamento de tumores do encéfalo devido ao seu alto grau de detalhamento anatômico. A tarefa de segmenta¸cão da região tumoral, nestas, permite uma análise quantitativa mais precisa, viabilizando um melhor acompanhamento da evolução/regressão da doença. Porém, a realização manual de tal trabalho é cansativa e apresenta diversas desvantagens que a tornam proibitiva, fazendo com que nao haja muitos médicos dispostos a realizá-la rotineiramente. Neste trabalho é proposto um sistema para segmenta¸cão automática de tumores do encéfalo. O sistema emprega parâmetros de textura de naturezas diversas, como estatísticos, baseados em modelo, e baseados em transformada, os quais são extraídos de diferentes tipos de imagem comuns à pratica médica (T1, T1 com contraste e FLAIR). As técnicas de análise de textura são capazes de detectar alterações mínimas nos tecidos, às vezes imperceptíveis à visão humana, fato que motiva sua adoção; e podem ser complementadas por informações adicionais como valores de intensidade. O sistema proposto conta com quatro etapas básicas: pré-processamento, extração de características, segmentação e pós-processamento; e baseia-se no uso de uma máquina de vetor de suporte para classificação dos pixeis. Os resultados obtidos mostram que o sistema apresenta uma taxa média de acerto elevada, comparável aos resultados encontrados em trabalhos relacionados, sendo capaz de localizar e delimitar a região tumoral sem necessidade de interação com o usuário. A quantificação dos resultados foi realizada utilizando-se métricas de artigos encontrados na literatura.Magnetic resonance images are essential in the diagnosing and treatment of brain tumors due to its high amount of anatomic details. The task of segmenting brain tumor regions in these images makes more exact quantitative analysis feasible, allowing a better tracking of the evolution/regression of the disease. Nevertheless, the execution of such task is burdensome, featuring several drawbacks that turns it into a prohibitive one, and makes many doctors unwilling to put it into practice. In this work an automatic brain tumor segmentation system is proposed, in which several types of texture parameters such as statistical, model based and transform based, are applied. Those parameters are extracted from different, extensively used, types of magnetic resonance images (T1, T1 with contrast and FLAIR). Texture analysis techniques are capable of detecting tiny changes in underlying tissue, which are sometimes imperceptible to the human vision, fact that motivates its adoption here. Texture features can also be completed by other kinds of characteristics, such as pixel intensity. The proposed system comprises four basic steps: pre-processing, feature extraction, segmentation, and post-processing, and is based on a support vector machine for pixel classification. Final results shows that the system archived high success rates, which are comparable to results found in related works, and that it was able to locate and delimit tumor areas without any user interaction. For the quantification of the results, some metrics found in papers presented in the literature were adopted.Biblioteca Digitais de Teses e Dissertações da USPLopes, Roseli de DeusAlegro, Maryana de Carvalho2009-04-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-11082009-170102/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-11082009-170102Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
Brain tumor segmentation in magnetic resonance images based on texture information.
title Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
spellingShingle Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
Alegro, Maryana de Carvalho
Digital image processing
Imagem por ressonância magnética
Magnetic resonance image
Neoplasias do sistema nervoso
Neoplasm of the nervous system
Processamento digital de imagens
Textura (avaliação)
Texture (evaluation)
title_short Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
title_full Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
title_fullStr Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
title_full_unstemmed Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
title_sort Segmentação de tumores de encéfalo em imagens por ressonância magnética baseada em informações texturais.
author Alegro, Maryana de Carvalho
author_facet Alegro, Maryana de Carvalho
author_role author
dc.contributor.none.fl_str_mv Lopes, Roseli de Deus
dc.contributor.author.fl_str_mv Alegro, Maryana de Carvalho
dc.subject.por.fl_str_mv Digital image processing
Imagem por ressonância magnética
Magnetic resonance image
Neoplasias do sistema nervoso
Neoplasm of the nervous system
Processamento digital de imagens
Textura (avaliação)
Texture (evaluation)
topic Digital image processing
Imagem por ressonância magnética
Magnetic resonance image
Neoplasias do sistema nervoso
Neoplasm of the nervous system
Processamento digital de imagens
Textura (avaliação)
Texture (evaluation)
description As imagens por ressonância magnéticas não indispensáveis no diagnóstico e tratamento de tumores do encéfalo devido ao seu alto grau de detalhamento anatômico. A tarefa de segmenta¸cão da região tumoral, nestas, permite uma análise quantitativa mais precisa, viabilizando um melhor acompanhamento da evolução/regressão da doença. Porém, a realização manual de tal trabalho é cansativa e apresenta diversas desvantagens que a tornam proibitiva, fazendo com que nao haja muitos médicos dispostos a realizá-la rotineiramente. Neste trabalho é proposto um sistema para segmenta¸cão automática de tumores do encéfalo. O sistema emprega parâmetros de textura de naturezas diversas, como estatísticos, baseados em modelo, e baseados em transformada, os quais são extraídos de diferentes tipos de imagem comuns à pratica médica (T1, T1 com contraste e FLAIR). As técnicas de análise de textura são capazes de detectar alterações mínimas nos tecidos, às vezes imperceptíveis à visão humana, fato que motiva sua adoção; e podem ser complementadas por informações adicionais como valores de intensidade. O sistema proposto conta com quatro etapas básicas: pré-processamento, extração de características, segmentação e pós-processamento; e baseia-se no uso de uma máquina de vetor de suporte para classificação dos pixeis. Os resultados obtidos mostram que o sistema apresenta uma taxa média de acerto elevada, comparável aos resultados encontrados em trabalhos relacionados, sendo capaz de localizar e delimitar a região tumoral sem necessidade de interação com o usuário. A quantificação dos resultados foi realizada utilizando-se métricas de artigos encontrados na literatura.
publishDate 2009
dc.date.none.fl_str_mv 2009-04-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-11082009-170102/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-11082009-170102/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256869610979328