Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-165500/ |
Resumo: | A finalidade deste trabalho é formular um modelo de regressão de longa duração em dois estágios, onde o mecanismo destrutivo dos fatores de riscos responsáveis pela sobrevivência do paciente está relacionado com três fontes de variabilidades: aleatória, externa e interna. O número de fatores de riscos é um efeito aleatório latente, que expressa o comportamento heterogêneo dos pacientes em relação ao risco básico da população, conhecido na literatura como fragilidade discreta. Esta fragilidade está diretamente conectada ao fenômeno de superdispersão e o mecanismo destrutivo. Várias distribuições discretas com caudas pesadas (\"J-shaped\") têm sido utilizadas para explicar o excesso de variabilidade, entretanto sem sucesso para separar a fragilidade interna, que corresponde ao mecanismo destrutivo, da fragilidade externa que corresponde a covariadas desconhecidas e não incluídas no modelo. A distribuição Binomial Negativa (BN) é a mais utilizada, porém não é flexível o suficiente para permitir uma destruição interna sem os ruídos externos. Neste contexto, a distribuição Waring é uma alternativa mais realista para o modelo de longa duração devido a existência de um mecanismo destrutivo individual e flexível. Consequentemente, a taxa de cura e o mecanismo destrutivo são personalizados e úteis no tratamento de câncer por imunoterapia, onde o paciente é o protagonista do tratamento. Um estudo de simulação Monte Carlo e aplicações com dados HIV e melanoma serão apresentados. A distribuiçãoWaring é utilizada com sucesso na teoria de acidentes, onde os principais paradigmas serão adaptados na análise de sobrevivência de longa duração. |
id |
USP_dd1fd40c5b3549a1eebd409e1463e731 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-24072020-165500 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duraçãoAn useful variance decomposition for destructive Waring regression long-term modelAccident theoryAleatorizaçãoCovariadasCovariatesDestructive mechanismDistribuição Waring GeneralizadaExternal frailtyFragilidadeFragilidade externaFragilidade internaFrailtyGeneralized Waring distributionImmunotherapyImunoterapiaInternal frailtyMecanismo destrutivoRandomnessTeoria de acidentesA finalidade deste trabalho é formular um modelo de regressão de longa duração em dois estágios, onde o mecanismo destrutivo dos fatores de riscos responsáveis pela sobrevivência do paciente está relacionado com três fontes de variabilidades: aleatória, externa e interna. O número de fatores de riscos é um efeito aleatório latente, que expressa o comportamento heterogêneo dos pacientes em relação ao risco básico da população, conhecido na literatura como fragilidade discreta. Esta fragilidade está diretamente conectada ao fenômeno de superdispersão e o mecanismo destrutivo. Várias distribuições discretas com caudas pesadas (\"J-shaped\") têm sido utilizadas para explicar o excesso de variabilidade, entretanto sem sucesso para separar a fragilidade interna, que corresponde ao mecanismo destrutivo, da fragilidade externa que corresponde a covariadas desconhecidas e não incluídas no modelo. A distribuição Binomial Negativa (BN) é a mais utilizada, porém não é flexível o suficiente para permitir uma destruição interna sem os ruídos externos. Neste contexto, a distribuição Waring é uma alternativa mais realista para o modelo de longa duração devido a existência de um mecanismo destrutivo individual e flexível. Consequentemente, a taxa de cura e o mecanismo destrutivo são personalizados e úteis no tratamento de câncer por imunoterapia, onde o paciente é o protagonista do tratamento. Um estudo de simulação Monte Carlo e aplicações com dados HIV e melanoma serão apresentados. A distribuiçãoWaring é utilizada com sucesso na teoria de acidentes, onde os principais paradigmas serão adaptados na análise de sobrevivência de longa duração.The goal of this work is to formulate a two-stage regression long-term model, whose destructive mechanism of the competitive risk factors is flexible for measuring the impact on the survival function or cure rate of three variance components induced by: randomness effects, external effects or external frailties (unknown covariates) and destruction or internal frailty (destructive mechanism). The number of the risk factors which were not eliminated is unobservable random variable, called discrete frailty, and the choice of the frailty distribution must be appropriate to detect the sources of variability responsible for the variation between patients. The discrete frailty random variable of the first-stage of the model is based on the Waring distribution, which splits the variance into these three components, and was applied with success in the accident theory, epidemiology and biology. A simulation study and an application to a HIV and melanoma data, via likelihood approach, illustrate the utility of the Waring distribution to detect internal frailty, external frailty and models uncertainty (randomness effect), which are not observable and responsible for the heterogeneity across patients. The cure rate is personalized and the patient is a protagonist for the treatment, and that could be useful to decide on preventive immunotherapy treatment for patients to fight cancer.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, JosemarVasquez, Jonathan Kevin Jordan2020-04-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-165500/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-08-13T00:47:09Zoai:teses.usp.br:tde-24072020-165500Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-08-13T00:47:09Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração An useful variance decomposition for destructive Waring regression long-term model |
title |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração |
spellingShingle |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração Vasquez, Jonathan Kevin Jordan Accident theory Aleatorização Covariadas Covariates Destructive mechanism Distribuição Waring Generalizada External frailty Fragilidade Fragilidade externa Fragilidade interna Frailty Generalized Waring distribution Immunotherapy Imunoterapia Internal frailty Mecanismo destrutivo Randomness Teoria de acidentes |
title_short |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração |
title_full |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração |
title_fullStr |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração |
title_full_unstemmed |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração |
title_sort |
Decomposição da variância para o modelo de regressão destrutivo Waring de longa duração |
author |
Vasquez, Jonathan Kevin Jordan |
author_facet |
Vasquez, Jonathan Kevin Jordan |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Josemar |
dc.contributor.author.fl_str_mv |
Vasquez, Jonathan Kevin Jordan |
dc.subject.por.fl_str_mv |
Accident theory Aleatorização Covariadas Covariates Destructive mechanism Distribuição Waring Generalizada External frailty Fragilidade Fragilidade externa Fragilidade interna Frailty Generalized Waring distribution Immunotherapy Imunoterapia Internal frailty Mecanismo destrutivo Randomness Teoria de acidentes |
topic |
Accident theory Aleatorização Covariadas Covariates Destructive mechanism Distribuição Waring Generalizada External frailty Fragilidade Fragilidade externa Fragilidade interna Frailty Generalized Waring distribution Immunotherapy Imunoterapia Internal frailty Mecanismo destrutivo Randomness Teoria de acidentes |
description |
A finalidade deste trabalho é formular um modelo de regressão de longa duração em dois estágios, onde o mecanismo destrutivo dos fatores de riscos responsáveis pela sobrevivência do paciente está relacionado com três fontes de variabilidades: aleatória, externa e interna. O número de fatores de riscos é um efeito aleatório latente, que expressa o comportamento heterogêneo dos pacientes em relação ao risco básico da população, conhecido na literatura como fragilidade discreta. Esta fragilidade está diretamente conectada ao fenômeno de superdispersão e o mecanismo destrutivo. Várias distribuições discretas com caudas pesadas (\"J-shaped\") têm sido utilizadas para explicar o excesso de variabilidade, entretanto sem sucesso para separar a fragilidade interna, que corresponde ao mecanismo destrutivo, da fragilidade externa que corresponde a covariadas desconhecidas e não incluídas no modelo. A distribuição Binomial Negativa (BN) é a mais utilizada, porém não é flexível o suficiente para permitir uma destruição interna sem os ruídos externos. Neste contexto, a distribuição Waring é uma alternativa mais realista para o modelo de longa duração devido a existência de um mecanismo destrutivo individual e flexível. Consequentemente, a taxa de cura e o mecanismo destrutivo são personalizados e úteis no tratamento de câncer por imunoterapia, onde o paciente é o protagonista do tratamento. Um estudo de simulação Monte Carlo e aplicações com dados HIV e melanoma serão apresentados. A distribuiçãoWaring é utilizada com sucesso na teoria de acidentes, onde os principais paradigmas serão adaptados na análise de sobrevivência de longa duração. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-165500/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-24072020-165500/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257309724540928 |