Collective dynamics in complex networks for machine learning

Detalhes bibliográficos
Autor(a) principal: Verri, Filipe Alves Neto
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-113054/
Resumo: Machine learning enables machines to learn automatically from data. In literature, graph-based methods have received increasing attention due to their ability to learn from both local and global information. In these methods, each data instance is represented by a vertex and is linked to other vertices according to a predefined affinity rule. However, they usually have unfeasible time cost for large problems. To overcome this problem, techniques can employ a heuristic to find suboptimal solutions in a feasible time. Early heuristic optimization methods exploit nature-inspired collective processes, such as ants looking for food sources and swarms of bees. Nowadays, advances in the field of complex systems provide powerful tools to assess and to understand dynamical systems. Complex networks, which are graphs with nontrivial topology, are among these theoretical tools capable of describing the interplay of topology, structure, and dynamics of complex systems. Therefore, machine learning methods based on complex networks and collective dynamics have been proposed. They encompass three steps. First, a complex network is constructed from the input data. Then, the simulation of a distributed collective system in the network generates rich information. Finally, the collected information is used to solve the learning problem. The coordination of the individuals in the system permit to achieve dynamics that is far more complex than the behavior of single individuals. In this research, I have explored collective dynamics in machine learning tasks, both in unsupervised and semi-supervised scenarios. Specifically, I have proposed a new collective system of competing particles that shifts the traditional vertex-centric dynamics to a more informative edge-centric one. Moreover, it is the first particle competition system applied in machine learning task that has deterministic behavior. Results show several advantages of the edge-centric model, including the ability to acquire more information about overlapping areas, a better exploration behavior, and a faster convergence time. Also, I have proposed a new network formation technique that is not based on similarity and has low computational cost. Since addition and removal of samples in the network is cheap, it can be used in real-time application. Finally, I have conducted analytical investigations of a flocking-like system that was needed to guarantee the expected behavior in community detection tasks. In conclusion, the result of the research contributes to many areas of machine learning and complex systems.
id USP_de2eea6dd4db95deb14432e1fcfcfb14
oai_identifier_str oai:teses.usp.br:tde-18102018-113054
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Collective dynamics in complex networks for machine learningDinâmica coletiva em redes complexas para aprendizado de máquinaAprendizado de máquinaAprendizado não supervisionadoAprendizado semissupervisionadoCollective dynamicsComplex networksDinâmica coletivaMachine learningRedes complexasSemi-supervised learningUnsupervised learningMachine learning enables machines to learn automatically from data. In literature, graph-based methods have received increasing attention due to their ability to learn from both local and global information. In these methods, each data instance is represented by a vertex and is linked to other vertices according to a predefined affinity rule. However, they usually have unfeasible time cost for large problems. To overcome this problem, techniques can employ a heuristic to find suboptimal solutions in a feasible time. Early heuristic optimization methods exploit nature-inspired collective processes, such as ants looking for food sources and swarms of bees. Nowadays, advances in the field of complex systems provide powerful tools to assess and to understand dynamical systems. Complex networks, which are graphs with nontrivial topology, are among these theoretical tools capable of describing the interplay of topology, structure, and dynamics of complex systems. Therefore, machine learning methods based on complex networks and collective dynamics have been proposed. They encompass three steps. First, a complex network is constructed from the input data. Then, the simulation of a distributed collective system in the network generates rich information. Finally, the collected information is used to solve the learning problem. The coordination of the individuals in the system permit to achieve dynamics that is far more complex than the behavior of single individuals. In this research, I have explored collective dynamics in machine learning tasks, both in unsupervised and semi-supervised scenarios. Specifically, I have proposed a new collective system of competing particles that shifts the traditional vertex-centric dynamics to a more informative edge-centric one. Moreover, it is the first particle competition system applied in machine learning task that has deterministic behavior. Results show several advantages of the edge-centric model, including the ability to acquire more information about overlapping areas, a better exploration behavior, and a faster convergence time. Also, I have proposed a new network formation technique that is not based on similarity and has low computational cost. Since addition and removal of samples in the network is cheap, it can be used in real-time application. Finally, I have conducted analytical investigations of a flocking-like system that was needed to guarantee the expected behavior in community detection tasks. In conclusion, the result of the research contributes to many areas of machine learning and complex systems.Aprendizado de máquina permite que computadores aprendam automaticamente dos dados. Na literatura, métodos baseados em grafos recebem crescente atenção por serem capazes de aprender através de informações locais e globais. Nestes métodos, cada item de dado é um vértice e as conexões são dadas uma regra de afinidade. Todavia, tais técnicas possuem custo de tempo impraticável para grandes grafos. O uso de heurísticas supera este problema, encontrando soluções subótimas em tempo factível. No início, alguns métodos de otimização inspiraram suas heurísticas em processos naturais coletivos, como formigas procurando por comida e enxames de abelhas. Atualmente, os avanços na área de sistemas complexos provêm ferramentas para medir e entender estes sistemas. Redes complexas, as quais são grafos com topologia não trivial, são uma das ferramentas. Elas são capazes de descrever as relações entre topologia, estrutura e dinâmica de sistemas complexos. Deste modo, novos métodos de aprendizado baseados em redes complexas e dinâmica coletiva vêm surgindo. Eles atuam em três passos. Primeiro, uma rede complexa é construída da entrada. Então, simula-se um sistema coletivo distribuído na rede para obter informações. Enfim, a informação coletada é utilizada para resolver o problema. A interação entre indivíduos no sistema permite alcançar uma dinâmica muito mais complexa do que o comportamento individual. Nesta pesquisa, estudei o uso de dinâmica coletiva em problemas de aprendizado de máquina, tanto em casos não supervisionados como semissupervisionados. Especificamente, propus um novo sistema de competição de partículas cuja competição ocorre em arestas ao invés de vértices, aumentando a informação do sistema. Ainda, o sistema proposto é o primeiro modelo de competição de partículas aplicado em aprendizado de máquina com comportamento determinístico. Resultados comprovam várias vantagens do modelo em arestas, includindo detecção de áreas sobrepostas, melhor exploração do espaço e convergência mais rápida. Além disso, apresento uma nova técnica de formação de redes que não é baseada na similaridade dos dados e possui baixa complexidade computational. Uma vez que o custo de inserção e remoção de exemplos na rede é barato, o método pode ser aplicado em aplicações de tempo real. Finalmente, conduzi um estudo analítico em um sistema de alinhamento de partículas. O estudo foi necessário para garantir o comportamento esperado na aplicação do sistema em problemas de detecção de comunidades. Em suma, os resultados da pesquisa contribuíram para várias áreas de aprendizado de máquina e sistemas complexos.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoVerri, Filipe Alves Neto2018-03-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-113054/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-11-01T16:25:01Zoai:teses.usp.br:tde-18102018-113054Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-11-01T16:25:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Collective dynamics in complex networks for machine learning
Dinâmica coletiva em redes complexas para aprendizado de máquina
title Collective dynamics in complex networks for machine learning
spellingShingle Collective dynamics in complex networks for machine learning
Verri, Filipe Alves Neto
Aprendizado de máquina
Aprendizado não supervisionado
Aprendizado semissupervisionado
Collective dynamics
Complex networks
Dinâmica coletiva
Machine learning
Redes complexas
Semi-supervised learning
Unsupervised learning
title_short Collective dynamics in complex networks for machine learning
title_full Collective dynamics in complex networks for machine learning
title_fullStr Collective dynamics in complex networks for machine learning
title_full_unstemmed Collective dynamics in complex networks for machine learning
title_sort Collective dynamics in complex networks for machine learning
author Verri, Filipe Alves Neto
author_facet Verri, Filipe Alves Neto
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
dc.contributor.author.fl_str_mv Verri, Filipe Alves Neto
dc.subject.por.fl_str_mv Aprendizado de máquina
Aprendizado não supervisionado
Aprendizado semissupervisionado
Collective dynamics
Complex networks
Dinâmica coletiva
Machine learning
Redes complexas
Semi-supervised learning
Unsupervised learning
topic Aprendizado de máquina
Aprendizado não supervisionado
Aprendizado semissupervisionado
Collective dynamics
Complex networks
Dinâmica coletiva
Machine learning
Redes complexas
Semi-supervised learning
Unsupervised learning
description Machine learning enables machines to learn automatically from data. In literature, graph-based methods have received increasing attention due to their ability to learn from both local and global information. In these methods, each data instance is represented by a vertex and is linked to other vertices according to a predefined affinity rule. However, they usually have unfeasible time cost for large problems. To overcome this problem, techniques can employ a heuristic to find suboptimal solutions in a feasible time. Early heuristic optimization methods exploit nature-inspired collective processes, such as ants looking for food sources and swarms of bees. Nowadays, advances in the field of complex systems provide powerful tools to assess and to understand dynamical systems. Complex networks, which are graphs with nontrivial topology, are among these theoretical tools capable of describing the interplay of topology, structure, and dynamics of complex systems. Therefore, machine learning methods based on complex networks and collective dynamics have been proposed. They encompass three steps. First, a complex network is constructed from the input data. Then, the simulation of a distributed collective system in the network generates rich information. Finally, the collected information is used to solve the learning problem. The coordination of the individuals in the system permit to achieve dynamics that is far more complex than the behavior of single individuals. In this research, I have explored collective dynamics in machine learning tasks, both in unsupervised and semi-supervised scenarios. Specifically, I have proposed a new collective system of competing particles that shifts the traditional vertex-centric dynamics to a more informative edge-centric one. Moreover, it is the first particle competition system applied in machine learning task that has deterministic behavior. Results show several advantages of the edge-centric model, including the ability to acquire more information about overlapping areas, a better exploration behavior, and a faster convergence time. Also, I have proposed a new network formation technique that is not based on similarity and has low computational cost. Since addition and removal of samples in the network is cheap, it can be used in real-time application. Finally, I have conducted analytical investigations of a flocking-like system that was needed to guarantee the expected behavior in community detection tasks. In conclusion, the result of the research contributes to many areas of machine learning and complex systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-113054/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18102018-113054/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090842048069632