Complex network component unfolding using a particle competition technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092017-091318/ |
Resumo: | This work applies complex network theory to the problem of semi-supervised and unsupervised learning in networks that are representations of multivariate datasets. Complex networks allow the use of nonlinear dynamical systems to represent behaviors according to the connectivity patterns of networks. Inspired by behavior observed in nature, such as competition for limited resources, dynamical system models can be employed to uncover the organizational structure of a network. In this dissertation, we develop a technique for classifying data represented as interaction networks. As part of the technique, we model a dynamical system inspired by the biological dynamics of resource competition. So far, similar methods have focused on vertices as the resource of competition. We introduce edges as the resource of competition. In doing so, the connectivity pattern of a network might be used not only in the dynamical system simulation but in the learning task as well. |
id |
USP_b38135405ded54617ad78174cdcdfce0 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14092017-091318 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Complex network component unfolding using a particle competition techniqueDesdobramento de componentes de redes complexas utilizando uma técnica de competição de partículasAgrupamento de dadosAprendizado de máquinaAprendizado semissupervisionadoCommunity detectionComplex networksData clusteringDetecção de comunidadesMachine learningRedes complexasSemi-supervised learningThis work applies complex network theory to the problem of semi-supervised and unsupervised learning in networks that are representations of multivariate datasets. Complex networks allow the use of nonlinear dynamical systems to represent behaviors according to the connectivity patterns of networks. Inspired by behavior observed in nature, such as competition for limited resources, dynamical system models can be employed to uncover the organizational structure of a network. In this dissertation, we develop a technique for classifying data represented as interaction networks. As part of the technique, we model a dynamical system inspired by the biological dynamics of resource competition. So far, similar methods have focused on vertices as the resource of competition. We introduce edges as the resource of competition. In doing so, the connectivity pattern of a network might be used not only in the dynamical system simulation but in the learning task as well.Este trabalho aplica a teoria de redes complexas para o estudo de uma técnica aplicada ao problema de aprendizado semissupervisionado e não-supervisionado em redes, especificamente, aquelas que representam conjuntos de dados multivariados. Redes complexas permitem o emprego de sistemas dinâmicos não-lineares que podem apresentar comportamentos de acordo com os padrões de conectividade de redes. Inspirado pelos comportamentos observados na natureza, tais como a competição por recursos limitados, sistema dinâmicos podem ser utilizados para revelar a estrutura da organização de uma rede. Nesta dissertação, desenvolve-se uma técnica aplicada ao problema de classificação de dados representados por redes de interação. Como parte da técnica, um sistema dinâmico inspirado na competição por recursos foi modelado. Métodos similares concentraram-se em vértices como o recurso da concorrência. Neste trabalho, introduziu-se arestas como o recurso-alvo da competição. Ao fazê-lo, utilizar-se-á o padrão de conectividade de uma rede tanto na simulação do sistema dinâmico, quanto na tarefa de aprendizado.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoUrio, Paulo Roberto2017-06-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092017-091318/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-14092017-091318Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Complex network component unfolding using a particle competition technique Desdobramento de componentes de redes complexas utilizando uma técnica de competição de partículas |
title |
Complex network component unfolding using a particle competition technique |
spellingShingle |
Complex network component unfolding using a particle competition technique Urio, Paulo Roberto Agrupamento de dados Aprendizado de máquina Aprendizado semissupervisionado Community detection Complex networks Data clustering Detecção de comunidades Machine learning Redes complexas Semi-supervised learning |
title_short |
Complex network component unfolding using a particle competition technique |
title_full |
Complex network component unfolding using a particle competition technique |
title_fullStr |
Complex network component unfolding using a particle competition technique |
title_full_unstemmed |
Complex network component unfolding using a particle competition technique |
title_sort |
Complex network component unfolding using a particle competition technique |
author |
Urio, Paulo Roberto |
author_facet |
Urio, Paulo Roberto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Liang, Zhao |
dc.contributor.author.fl_str_mv |
Urio, Paulo Roberto |
dc.subject.por.fl_str_mv |
Agrupamento de dados Aprendizado de máquina Aprendizado semissupervisionado Community detection Complex networks Data clustering Detecção de comunidades Machine learning Redes complexas Semi-supervised learning |
topic |
Agrupamento de dados Aprendizado de máquina Aprendizado semissupervisionado Community detection Complex networks Data clustering Detecção de comunidades Machine learning Redes complexas Semi-supervised learning |
description |
This work applies complex network theory to the problem of semi-supervised and unsupervised learning in networks that are representations of multivariate datasets. Complex networks allow the use of nonlinear dynamical systems to represent behaviors according to the connectivity patterns of networks. Inspired by behavior observed in nature, such as competition for limited resources, dynamical system models can be employed to uncover the organizational structure of a network. In this dissertation, we develop a technique for classifying data represented as interaction networks. As part of the technique, we model a dynamical system inspired by the biological dynamics of resource competition. So far, similar methods have focused on vertices as the resource of competition. We introduce edges as the resource of competition. In doing so, the connectivity pattern of a network might be used not only in the dynamical system simulation but in the learning task as well. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092017-091318/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092017-091318/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256972408127488 |