Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas

Detalhes bibliográficos
Autor(a) principal: Oliveira, Luan Soares
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042016-143503/
Resumo: Aprender conceitos provenientes de fluxos de dados é uma tarefa significamente diferente do aprendizado tradicional em lote. No aprendizado em lote, existe uma premissa implicita que os conceitos a serem aprendidos são estáticos e não evoluem significamente com o tempo. Por outro lado, em fluxos de dados os conceitos a serem aprendidos podem evoluir ao longo do tempo. Esta evolução é chamada de mudança de conceito, e torna a criação de um conjunto fixo de treinamento inaplicável neste cenário. O aprendizado incremental é uma abordagem promissora para trabalhar com fluxos de dados. Contudo, na presença de mudanças de conceito, conceitos desatualizados podem causar erros na classificação de eventos. Apesar de alguns métodos incrementais baseados no modelo de misturas gaussianas terem sido propostos na literatura, nota-se que tais algoritmos não possuem uma política explicita de descarte de conceitos obsoletos. Nesse trabalho um novo algoritmo incremental para fluxos de dados com mudanças de conceito baseado no modelo de misturas gaussianas é proposto. O método proposto é comparado com vários algoritmos amplamente utilizados na literatura, e os resultados mostram que o algoritmo proposto é competitivo com os demais em vários cenários, superando-os em alguns casos.
id USP_df52ada4211758ebff1ecb9bf55ba07d
oai_identifier_str oai:teses.usp.br:tde-06042016-143503
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianasNon-stationary data streams classification with incremental algorithms based on Gaussian mixture modelsAprendizado incrementalConcept driftData streamFluxo de dadosGaussian mixture modelIncremental learningModelo de misturas gaussianasMudança de ConceitoAprender conceitos provenientes de fluxos de dados é uma tarefa significamente diferente do aprendizado tradicional em lote. No aprendizado em lote, existe uma premissa implicita que os conceitos a serem aprendidos são estáticos e não evoluem significamente com o tempo. Por outro lado, em fluxos de dados os conceitos a serem aprendidos podem evoluir ao longo do tempo. Esta evolução é chamada de mudança de conceito, e torna a criação de um conjunto fixo de treinamento inaplicável neste cenário. O aprendizado incremental é uma abordagem promissora para trabalhar com fluxos de dados. Contudo, na presença de mudanças de conceito, conceitos desatualizados podem causar erros na classificação de eventos. Apesar de alguns métodos incrementais baseados no modelo de misturas gaussianas terem sido propostos na literatura, nota-se que tais algoritmos não possuem uma política explicita de descarte de conceitos obsoletos. Nesse trabalho um novo algoritmo incremental para fluxos de dados com mudanças de conceito baseado no modelo de misturas gaussianas é proposto. O método proposto é comparado com vários algoritmos amplamente utilizados na literatura, e os resultados mostram que o algoritmo proposto é competitivo com os demais em vários cenários, superando-os em alguns casos.Learning concepts from data streams differs significantly from traditional batch learning. In batch learning there is an implicit assumption that the concept to be learned is static and does not evolve significantly over time. On the other hand, in data stream learning the concepts to be learned may evolve over time. This evolution is called concept drift, and makes the creation of a fixed training set be no longer applicable. Incremental learning paradigm is a promising approach for learning in a data stream setting. However, in the presence of concept drifts, out dated concepts can cause misclassifications. Several incremental Gaussian mixture models methods have been proposed in the literature, but these algorithms lack an explicit policy to discard outdated concepts. In this work, a new incremental algorithm for data stream with concept drifts based on Gaussian Mixture Models is proposed. The proposed methodis compared to various algorithms widely used in the literature, and the results show that it is competitive with them invarious scenarios, overcoming them in some cases.Biblioteca Digitais de Teses e Dissertações da USPBatista, Gustavo Enrique de Almeida Prado AlvesOliveira, Luan Soares2015-08-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042016-143503/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:18Zoai:teses.usp.br:tde-06042016-143503Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
Non-stationary data streams classification with incremental algorithms based on Gaussian mixture models
title Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
spellingShingle Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
Oliveira, Luan Soares
Aprendizado incremental
Concept drift
Data stream
Fluxo de dados
Gaussian mixture model
Incremental learning
Modelo de misturas gaussianas
Mudança de Conceito
title_short Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
title_full Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
title_fullStr Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
title_full_unstemmed Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
title_sort Classificação de fluxos de dados não estacionários com algoritmos incrementais baseados no modelo de misturas gaussianas
author Oliveira, Luan Soares
author_facet Oliveira, Luan Soares
author_role author
dc.contributor.none.fl_str_mv Batista, Gustavo Enrique de Almeida Prado Alves
dc.contributor.author.fl_str_mv Oliveira, Luan Soares
dc.subject.por.fl_str_mv Aprendizado incremental
Concept drift
Data stream
Fluxo de dados
Gaussian mixture model
Incremental learning
Modelo de misturas gaussianas
Mudança de Conceito
topic Aprendizado incremental
Concept drift
Data stream
Fluxo de dados
Gaussian mixture model
Incremental learning
Modelo de misturas gaussianas
Mudança de Conceito
description Aprender conceitos provenientes de fluxos de dados é uma tarefa significamente diferente do aprendizado tradicional em lote. No aprendizado em lote, existe uma premissa implicita que os conceitos a serem aprendidos são estáticos e não evoluem significamente com o tempo. Por outro lado, em fluxos de dados os conceitos a serem aprendidos podem evoluir ao longo do tempo. Esta evolução é chamada de mudança de conceito, e torna a criação de um conjunto fixo de treinamento inaplicável neste cenário. O aprendizado incremental é uma abordagem promissora para trabalhar com fluxos de dados. Contudo, na presença de mudanças de conceito, conceitos desatualizados podem causar erros na classificação de eventos. Apesar de alguns métodos incrementais baseados no modelo de misturas gaussianas terem sido propostos na literatura, nota-se que tais algoritmos não possuem uma política explicita de descarte de conceitos obsoletos. Nesse trabalho um novo algoritmo incremental para fluxos de dados com mudanças de conceito baseado no modelo de misturas gaussianas é proposto. O método proposto é comparado com vários algoritmos amplamente utilizados na literatura, e os resultados mostram que o algoritmo proposto é competitivo com os demais em vários cenários, superando-os em alguns casos.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042016-143503/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06042016-143503/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256550375161856