Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/handle/riufs/1764 |
Resumo: | Most machine learning algorithms need to handle large data sets. This feature often leads to limitations on processing time and memory. The Expectation-Maximization (EM) is one of such algorithms, which is used to train one of the most commonly used parametric statistical models, the Gaussian Mixture Models (GMM). All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In this study, we propose a parallel implementation of EM for training GMM using CUDA. Experiments are performed with a UCI dataset and results show a speedup of 7 if compared to the sequential version. We have also carried out modifications to the code in order to provide better access to global memory and shared memory usage. We have achieved up to 56.4% of achieved occupancy, regardless the number of Gaussians considered in the set of experiments. |
id |
UFS-2_a30227d65fb4ab0a5104eb2f94c9addb |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/1764 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Araújo, Gabriel FerreiraMacedo, Hendrik TeixeiraChella, Marco TúlioEstombelo Montesco, Carlos AlbertoMedeiros, Marcus Vinícius Oliveira2016-05-16T15:21:46Z2016-05-16T15:21:46Z2014-07ARAÚJO, G. F. et al. Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models. Journal of Computer Science, v. 10, n. 10, jul. 2014. Disponível em: <http://thescipub.com/abstract/10.3844/jcssp.2014.2124.2134>. Acesso em: 16 maio 2016.1552-6607https://ri.ufs.br/handle/riufs/1764Creative Commons Attribution LicenseMost machine learning algorithms need to handle large data sets. This feature often leads to limitations on processing time and memory. The Expectation-Maximization (EM) is one of such algorithms, which is used to train one of the most commonly used parametric statistical models, the Gaussian Mixture Models (GMM). All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In this study, we propose a parallel implementation of EM for training GMM using CUDA. Experiments are performed with a UCI dataset and results show a speedup of 7 if compared to the sequential version. We have also carried out modifications to the code in order to provide better access to global memory and shared memory usage. We have achieved up to 56.4% of achieved occupancy, regardless the number of Gaussians considered in the set of experiments.Science PublicationsExpectation-Maximization (EM)Gaussian Mixture Models (GMM)CUDAModelo de misturas guassianasParallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTHUMBNAILExpectationMaximisationAlgorithm.pdf.jpgExpectationMaximisationAlgorithm.pdf.jpgGenerated Thumbnailimage/jpeg1654https://ri.ufs.br/jspui/bitstream/riufs/1764/4/ExpectationMaximisationAlgorithm.pdf.jpge1d83bc55d4c8ea8b4696b80452e128bMD54ORIGINALExpectationMaximisationAlgorithm.pdfExpectationMaximisationAlgorithm.pdfapplication/pdf231445https://ri.ufs.br/jspui/bitstream/riufs/1764/1/ExpectationMaximisationAlgorithm.pdf23a26016efd98164dcb1970bc9ed33ddMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://ri.ufs.br/jspui/bitstream/riufs/1764/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTExpectationMaximisationAlgorithm.pdf.txtExpectationMaximisationAlgorithm.pdf.txtExtracted texttext/plain33778https://ri.ufs.br/jspui/bitstream/riufs/1764/3/ExpectationMaximisationAlgorithm.pdf.txtb35bf6003a9b91eb4dbd843e9ecdcba7MD53riufs/17642016-07-29 18:36:08.281oai:ufs.br:riufs/1764Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2016-07-29T21:36:08Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
title |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
spellingShingle |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models Araújo, Gabriel Ferreira Expectation-Maximization (EM) Gaussian Mixture Models (GMM) CUDA Modelo de misturas guassianas |
title_short |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
title_full |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
title_fullStr |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
title_full_unstemmed |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
title_sort |
Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models |
author |
Araújo, Gabriel Ferreira |
author_facet |
Araújo, Gabriel Ferreira Macedo, Hendrik Teixeira Chella, Marco Túlio Estombelo Montesco, Carlos Alberto Medeiros, Marcus Vinícius Oliveira |
author_role |
author |
author2 |
Macedo, Hendrik Teixeira Chella, Marco Túlio Estombelo Montesco, Carlos Alberto Medeiros, Marcus Vinícius Oliveira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Araújo, Gabriel Ferreira Macedo, Hendrik Teixeira Chella, Marco Túlio Estombelo Montesco, Carlos Alberto Medeiros, Marcus Vinícius Oliveira |
dc.subject.por.fl_str_mv |
Expectation-Maximization (EM) Gaussian Mixture Models (GMM) CUDA Modelo de misturas guassianas |
topic |
Expectation-Maximization (EM) Gaussian Mixture Models (GMM) CUDA Modelo de misturas guassianas |
description |
Most machine learning algorithms need to handle large data sets. This feature often leads to limitations on processing time and memory. The Expectation-Maximization (EM) is one of such algorithms, which is used to train one of the most commonly used parametric statistical models, the Gaussian Mixture Models (GMM). All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In this study, we propose a parallel implementation of EM for training GMM using CUDA. Experiments are performed with a UCI dataset and results show a speedup of 7 if compared to the sequential version. We have also carried out modifications to the code in order to provide better access to global memory and shared memory usage. We have achieved up to 56.4% of achieved occupancy, regardless the number of Gaussians considered in the set of experiments. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-07 |
dc.date.accessioned.fl_str_mv |
2016-05-16T15:21:46Z |
dc.date.available.fl_str_mv |
2016-05-16T15:21:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ARAÚJO, G. F. et al. Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models. Journal of Computer Science, v. 10, n. 10, jul. 2014. Disponível em: <http://thescipub.com/abstract/10.3844/jcssp.2014.2124.2134>. Acesso em: 16 maio 2016. |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/handle/riufs/1764 |
dc.identifier.issn.none.fl_str_mv |
1552-6607 |
dc.identifier.license.pt_BR.fl_str_mv |
Creative Commons Attribution License |
identifier_str_mv |
ARAÚJO, G. F. et al. Parallel implementation of Expectation-Maximisation algorithm for the training of Gaussian Mixture Models. Journal of Computer Science, v. 10, n. 10, jul. 2014. Disponível em: <http://thescipub.com/abstract/10.3844/jcssp.2014.2124.2134>. Acesso em: 16 maio 2016. 1552-6607 Creative Commons Attribution License |
url |
https://ri.ufs.br/handle/riufs/1764 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Science Publications |
publisher.none.fl_str_mv |
Science Publications |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/1764/4/ExpectationMaximisationAlgorithm.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/1764/1/ExpectationMaximisationAlgorithm.pdf https://ri.ufs.br/jspui/bitstream/riufs/1764/2/license.txt https://ri.ufs.br/jspui/bitstream/riufs/1764/3/ExpectationMaximisationAlgorithm.pdf.txt |
bitstream.checksum.fl_str_mv |
e1d83bc55d4c8ea8b4696b80452e128b 23a26016efd98164dcb1970bc9ed33dd 8a4605be74aa9ea9d79846c1fba20a33 b35bf6003a9b91eb4dbd843e9ecdcba7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110764518998016 |