Applications of complex systems science to address public policy issues

Detalhes bibliográficos
Autor(a) principal: Simoyama, Felipe de Oliveira
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/100/100132/tde-20092018-160704/
Resumo: In public policies, agents are part of an emergent and complex context, reason for which their actions should not be examined in isolation. The state of an agent is influenced by the state of others, in an environment where feedback is continuous and full of interactions. These characteristics result in a system where the total is more unpredictable and dazzling than the mere sum of its parts. As a result, there are a growing number of studies that use typical methods of complex systems to analyze public policies in various areas, such as healthcare, education, crime prevention, energy resources and others. Moreover, such distinct approach allows for more accessible investigations of public policy models, including policies that were not evaluated ex ante from the traditional lenses. This research had two main objectives: to verify how complex systems apply to the context of public policies theoretically and to present a practical application of a model, which was built based upon a case study. Since there is not a clear comprehension on how complex systems could benefit policy makers, this study presents, in its first part, a systematic literature review including some existing applications and the benefits of complexity science in the policy arena. On the whole, it can be asserted that there is a strong consensus that complex systems can be highly beneficial for policy makers and, consequently, for the overall population. Researchers perceive different benefits, such as the opportunity of testing policies a priori, the possibility of comparing different policies for the same topic, and the contemplation of new ideas and insights for better policy formulation. Although there are several simulations and models proposed for public policies in several areas, it lacks an empirical demonstration that effectively proves the benefits of applying complex systems in public policies, i.e., apparently, there are obstacles that prevent such models from having effects in the real world. In this way, the second part of the research presents an agent-based model that can be applied empirically in a government agency: a regulatory body. Such model allows policy makers to compare different enforcement strategies and anticipate side effects that would be difficult to predict without the use of simulations. In this sense, the objective of the second part of this research was to build an agent-based model of a public policy and for which a practical implementation could be carried out. Therefore, a public policy from a professional regulatory board in the healthcare area was chosen, for which two different strategies were tested, with the objective of comparing their efficiency and effectiveness. Such strategies were modeled and simulated with the use of Netlogo software with different scenarios. Results indicate that agent based models can serve as predictive tools for comparing and improving inspection strategies, and also as source of insights for anticipating unintended consequences that would hardly be noticed ex ante without the use of simulation tools
id USP_dfa9c5ee4443107625b5254077374a46
oai_identifier_str oai:teses.usp.br:tde-20092018-160704
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Applications of complex systems science to address public policy issuesAplicações de sistemas complexos para problemas de políticas públicasAgent based modelComplex systemsConselhos de fiscalizaçãoEfetividade de políticas públicasEffectiveness of public policiesHealthcareModelo baseado em agentesRegulatory bodySaúdeSistemas complexosIn public policies, agents are part of an emergent and complex context, reason for which their actions should not be examined in isolation. The state of an agent is influenced by the state of others, in an environment where feedback is continuous and full of interactions. These characteristics result in a system where the total is more unpredictable and dazzling than the mere sum of its parts. As a result, there are a growing number of studies that use typical methods of complex systems to analyze public policies in various areas, such as healthcare, education, crime prevention, energy resources and others. Moreover, such distinct approach allows for more accessible investigations of public policy models, including policies that were not evaluated ex ante from the traditional lenses. This research had two main objectives: to verify how complex systems apply to the context of public policies theoretically and to present a practical application of a model, which was built based upon a case study. Since there is not a clear comprehension on how complex systems could benefit policy makers, this study presents, in its first part, a systematic literature review including some existing applications and the benefits of complexity science in the policy arena. On the whole, it can be asserted that there is a strong consensus that complex systems can be highly beneficial for policy makers and, consequently, for the overall population. Researchers perceive different benefits, such as the opportunity of testing policies a priori, the possibility of comparing different policies for the same topic, and the contemplation of new ideas and insights for better policy formulation. Although there are several simulations and models proposed for public policies in several areas, it lacks an empirical demonstration that effectively proves the benefits of applying complex systems in public policies, i.e., apparently, there are obstacles that prevent such models from having effects in the real world. In this way, the second part of the research presents an agent-based model that can be applied empirically in a government agency: a regulatory body. Such model allows policy makers to compare different enforcement strategies and anticipate side effects that would be difficult to predict without the use of simulations. In this sense, the objective of the second part of this research was to build an agent-based model of a public policy and for which a practical implementation could be carried out. Therefore, a public policy from a professional regulatory board in the healthcare area was chosen, for which two different strategies were tested, with the objective of comparing their efficiency and effectiveness. Such strategies were modeled and simulated with the use of Netlogo software with different scenarios. Results indicate that agent based models can serve as predictive tools for comparing and improving inspection strategies, and also as source of insights for anticipating unintended consequences that would hardly be noticed ex ante without the use of simulation toolsEm políticas públicas, as ações dos agentes envolvidos não podem ser analisadas de forma isolada. O estado de um agente é influenciado pelo estado dos demais, num ambiente em que o feedback é contínuo e repleto de interações. Essas características resultam num sistema onde o total é mais imprevisível e deslumbrante do que a mera soma de suas partes. Com isso, há um crescente número de estudos que utilizam métodos típicos de sistemas complexos para analisar políticas públicas de diversas áreas, como saúde pública, educação, segurança, recursos energéticos e outros. Além disso, essa forma diferente de abordagem permite que alguns modelos de políticas públicas sejam investigados com mais facilidade, incluindo políticas que sequer eram analisadas pelo prisma tradicional. Esta pesquisa teve dois objetivos principais: verificar como os sistemas complexos se aplicam às políticas públicas no campo teórico e apresentar uma aplicação prática de modelagem dentro do contexto de um estudo de caso. Como ainda não há um entendimento sistematizado sobre como sistemas complexos podem ser úteis em políticas públicas, este estudo apresenta, em sua primeira parte, uma revisão sistemática de literatura para uma melhor compreensão de como essas aplicações ocorrem e de quais benefícios essa ciência, de fato, pode trazer. Em decorrência desse estudo, pode-se afirmar que há consenso, na literatura, de que a teoria da complexidade é benéfica para formuladores de políticas e, consequentemente, para a população em geral. Tais benefícios são vistos de diversas formas pelos pesquisadores, como, por exemplo, a possibilidade de se testar políticas a priori, a possibilidade de se comparar diversos tipos de políticas para um mesmo problema e a obtenção de novas perspectivas e ideias para formulação de políticas. Apesar de haver diversas simulações e modelos propostos para políticas públicas em diversas áreas, não foi constatada uma demonstração empírica que comprove efetivamente o benefício de se aplicar sistemas complexos em políticas públicas, ou seja, aparentemente há obstáculos que impedem esses modelos terem efeitos nas políticas de facto. Dessa maneira, o objetivo da segunda parte da pesquisa foi o de construir um modelo baseado em agentes relacionado a uma política pública e cuja implementação prática fosse factível. Assim, foi selecionada uma política relacionada a um órgão público de fiscalização do exercício profissional (conselho de classe), especificamente na área da saúde, para a qual foram traçadas duas estratégias diferentes, com o objetivo de compará-las em termos de eficácia e de efetividade. Essas estratégias foram modeladas e simuladas em software específico de modelos baseados em agentes para análise dos resultados considerando diversos cenários possíveis. Os resultados indicam que os modelos baseados em agentes podem auxiliar o formulador de políticas a comparar diferentes estratégias de fiscalização e antecipar efeitos colaterais que dificilmente seriam constatados ex ante sem a utilização de simulaçõesBiblioteca Digitais de Teses e Dissertações da USPSarti, Flávia MoriSimoyama, Felipe de Oliveira2018-06-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100132/tde-20092018-160704/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-10-03T01:45:28Zoai:teses.usp.br:tde-20092018-160704Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-10-03T01:45:28Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Applications of complex systems science to address public policy issues
Aplicações de sistemas complexos para problemas de políticas públicas
title Applications of complex systems science to address public policy issues
spellingShingle Applications of complex systems science to address public policy issues
Simoyama, Felipe de Oliveira
Agent based model
Complex systems
Conselhos de fiscalização
Efetividade de políticas públicas
Effectiveness of public policies
Healthcare
Modelo baseado em agentes
Regulatory body
Saúde
Sistemas complexos
title_short Applications of complex systems science to address public policy issues
title_full Applications of complex systems science to address public policy issues
title_fullStr Applications of complex systems science to address public policy issues
title_full_unstemmed Applications of complex systems science to address public policy issues
title_sort Applications of complex systems science to address public policy issues
author Simoyama, Felipe de Oliveira
author_facet Simoyama, Felipe de Oliveira
author_role author
dc.contributor.none.fl_str_mv Sarti, Flávia Mori
dc.contributor.author.fl_str_mv Simoyama, Felipe de Oliveira
dc.subject.por.fl_str_mv Agent based model
Complex systems
Conselhos de fiscalização
Efetividade de políticas públicas
Effectiveness of public policies
Healthcare
Modelo baseado em agentes
Regulatory body
Saúde
Sistemas complexos
topic Agent based model
Complex systems
Conselhos de fiscalização
Efetividade de políticas públicas
Effectiveness of public policies
Healthcare
Modelo baseado em agentes
Regulatory body
Saúde
Sistemas complexos
description In public policies, agents are part of an emergent and complex context, reason for which their actions should not be examined in isolation. The state of an agent is influenced by the state of others, in an environment where feedback is continuous and full of interactions. These characteristics result in a system where the total is more unpredictable and dazzling than the mere sum of its parts. As a result, there are a growing number of studies that use typical methods of complex systems to analyze public policies in various areas, such as healthcare, education, crime prevention, energy resources and others. Moreover, such distinct approach allows for more accessible investigations of public policy models, including policies that were not evaluated ex ante from the traditional lenses. This research had two main objectives: to verify how complex systems apply to the context of public policies theoretically and to present a practical application of a model, which was built based upon a case study. Since there is not a clear comprehension on how complex systems could benefit policy makers, this study presents, in its first part, a systematic literature review including some existing applications and the benefits of complexity science in the policy arena. On the whole, it can be asserted that there is a strong consensus that complex systems can be highly beneficial for policy makers and, consequently, for the overall population. Researchers perceive different benefits, such as the opportunity of testing policies a priori, the possibility of comparing different policies for the same topic, and the contemplation of new ideas and insights for better policy formulation. Although there are several simulations and models proposed for public policies in several areas, it lacks an empirical demonstration that effectively proves the benefits of applying complex systems in public policies, i.e., apparently, there are obstacles that prevent such models from having effects in the real world. In this way, the second part of the research presents an agent-based model that can be applied empirically in a government agency: a regulatory body. Such model allows policy makers to compare different enforcement strategies and anticipate side effects that would be difficult to predict without the use of simulations. In this sense, the objective of the second part of this research was to build an agent-based model of a public policy and for which a practical implementation could be carried out. Therefore, a public policy from a professional regulatory board in the healthcare area was chosen, for which two different strategies were tested, with the objective of comparing their efficiency and effectiveness. Such strategies were modeled and simulated with the use of Netlogo software with different scenarios. Results indicate that agent based models can serve as predictive tools for comparing and improving inspection strategies, and also as source of insights for anticipating unintended consequences that would hardly be noticed ex ante without the use of simulation tools
publishDate 2018
dc.date.none.fl_str_mv 2018-06-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/100/100132/tde-20092018-160704/
url http://www.teses.usp.br/teses/disponiveis/100/100132/tde-20092018-160704/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257182417977344